Properties

Label 4-1320e2-1.1-c1e2-0-12
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·9-s + 25-s + 5·27-s + 10·31-s + 10·37-s + 5·49-s − 8·67-s − 75-s + 81-s − 10·93-s − 12·97-s + 20·103-s − 10·111-s − 11·121-s + 127-s + 131-s + 137-s + 139-s − 5·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + ⋯
L(s)  = 1  − 0.577·3-s − 2/3·9-s + 1/5·25-s + 0.962·27-s + 1.79·31-s + 1.64·37-s + 5/7·49-s − 0.977·67-s − 0.115·75-s + 1/9·81-s − 1.03·93-s − 1.21·97-s + 1.97·103-s − 0.949·111-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.412·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.467877982\)
\(L(\frac12)\) \(\approx\) \(1.467877982\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 + p T^{2} \)
good7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 121 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87593654303349886857172077080, −7.40089264174184854820220349249, −6.89959855892061815346803427919, −6.45490567529153224316041407688, −6.03503403089325110773932856576, −5.84640189028514672926902501059, −5.17000253331662304363673919147, −4.83410991664986751020192288084, −4.32685908007666435600559165157, −3.90046835191341102603958250324, −3.06508779363212207018932415185, −2.79552916680326475647353080209, −2.19428086878722268444521359470, −1.24420742243129361157814848906, −0.57657177492431182439495503410, 0.57657177492431182439495503410, 1.24420742243129361157814848906, 2.19428086878722268444521359470, 2.79552916680326475647353080209, 3.06508779363212207018932415185, 3.90046835191341102603958250324, 4.32685908007666435600559165157, 4.83410991664986751020192288084, 5.17000253331662304363673919147, 5.84640189028514672926902501059, 6.03503403089325110773932856576, 6.45490567529153224316041407688, 6.89959855892061815346803427919, 7.40089264174184854820220349249, 7.87593654303349886857172077080

Graph of the $Z$-function along the critical line