Properties

Label 4-1320e2-1.1-c1e2-0-0
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 2·9-s − 2·12-s + 4·16-s − 14·19-s + 25-s − 5·27-s + 4·36-s − 20·43-s + 4·48-s + 5·49-s − 14·57-s − 8·64-s − 8·67-s + 4·73-s + 75-s + 28·76-s + 81-s − 20·97-s − 2·100-s + 10·108-s + 121-s + 127-s − 20·129-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 2/3·9-s − 0.577·12-s + 16-s − 3.21·19-s + 1/5·25-s − 0.962·27-s + 2/3·36-s − 3.04·43-s + 0.577·48-s + 5/7·49-s − 1.85·57-s − 64-s − 0.977·67-s + 0.468·73-s + 0.115·75-s + 3.21·76-s + 1/9·81-s − 2.03·97-s − 1/5·100-s + 0.962·108-s + 1/11·121-s + 0.0887·127-s − 1.76·129-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5372535941\)
\(L(\frac12)\) \(\approx\) \(0.5372535941\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_2$ \( 1 - T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 103 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.040460516550001471734519470308, −7.60236473112536637929154511987, −6.84816340029153899150109659868, −6.56032601094134442591874935435, −6.16406908249237227197626963659, −5.59543933610979103036970417314, −5.20456374238785512192638384626, −4.62110378161723352051570314008, −4.26606672523529396586203843914, −3.82773842606571010136543224538, −3.30313980739090856719676600044, −2.74608694741698517148860572607, −2.11157504068281887405456332947, −1.57196597364400704736238581312, −0.28799972540674795587320194896, 0.28799972540674795587320194896, 1.57196597364400704736238581312, 2.11157504068281887405456332947, 2.74608694741698517148860572607, 3.30313980739090856719676600044, 3.82773842606571010136543224538, 4.26606672523529396586203843914, 4.62110378161723352051570314008, 5.20456374238785512192638384626, 5.59543933610979103036970417314, 6.16406908249237227197626963659, 6.56032601094134442591874935435, 6.84816340029153899150109659868, 7.60236473112536637929154511987, 8.040460516550001471734519470308

Graph of the $Z$-function along the critical line