Properties

Label 4-1305e2-1.1-c1e2-0-8
Degree $4$
Conductor $1703025$
Sign $1$
Analytic cond. $108.586$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 6·11-s − 4·16-s + 11·25-s + 2·29-s − 16·31-s − 14·41-s + 10·49-s + 24·55-s + 20·59-s + 4·61-s + 16·71-s + 20·79-s − 16·80-s + 20·89-s − 34·101-s + 10·109-s + 5·121-s + 24·125-s + 127-s + 131-s + 137-s + 139-s + 8·145-s + 149-s + 151-s − 64·155-s + ⋯
L(s)  = 1  + 1.78·5-s + 1.80·11-s − 16-s + 11/5·25-s + 0.371·29-s − 2.87·31-s − 2.18·41-s + 10/7·49-s + 3.23·55-s + 2.60·59-s + 0.512·61-s + 1.89·71-s + 2.25·79-s − 1.78·80-s + 2.11·89-s − 3.38·101-s + 0.957·109-s + 5/11·121-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.664·145-s + 0.0819·149-s + 0.0813·151-s − 5.14·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1703025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1703025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1703025\)    =    \(3^{4} \cdot 5^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(108.586\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1703025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.593821200\)
\(L(\frac12)\) \(\approx\) \(3.593821200\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
29$C_1$ \( ( 1 - T )^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 145 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.757830890324680421257500645776, −9.304651197910903090142827882416, −9.087984649008141095164856247320, −8.943330686626200754391810227476, −8.431790346998482419687020396985, −7.83505957045947584722038934808, −7.16829402594956136890185706198, −6.80125036026447721708620469006, −6.52940572166120069586844787306, −6.36868223560415642204125320538, −5.50795266801216663163731395857, −5.27356761140796604447676436149, −5.09538745232020226661396787702, −4.02770147782157486020210128698, −3.93877574367662835515018825413, −3.31025327241847479150162293105, −2.46081331880117024809509595742, −1.98979331973206540154965494133, −1.66837869397666754533906565074, −0.808983604750814900464099448857, 0.808983604750814900464099448857, 1.66837869397666754533906565074, 1.98979331973206540154965494133, 2.46081331880117024809509595742, 3.31025327241847479150162293105, 3.93877574367662835515018825413, 4.02770147782157486020210128698, 5.09538745232020226661396787702, 5.27356761140796604447676436149, 5.50795266801216663163731395857, 6.36868223560415642204125320538, 6.52940572166120069586844787306, 6.80125036026447721708620469006, 7.16829402594956136890185706198, 7.83505957045947584722038934808, 8.431790346998482419687020396985, 8.943330686626200754391810227476, 9.087984649008141095164856247320, 9.304651197910903090142827882416, 9.757830890324680421257500645776

Graph of the $Z$-function along the critical line