Properties

Label 4-1305e2-1.1-c1e2-0-1
Degree $4$
Conductor $1703025$
Sign $1$
Analytic cond. $108.586$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4-s − 2·5-s − 4·7-s − 4·10-s + 4·11-s − 4·13-s − 8·14-s + 16-s − 4·19-s − 2·20-s + 8·22-s + 12·23-s + 3·25-s − 8·26-s − 4·28-s − 2·29-s − 4·31-s − 2·32-s + 8·35-s − 8·38-s + 12·41-s − 12·43-s + 4·44-s + 24·46-s + 12·47-s + 6·49-s + ⋯
L(s)  = 1  + 1.41·2-s + 1/2·4-s − 0.894·5-s − 1.51·7-s − 1.26·10-s + 1.20·11-s − 1.10·13-s − 2.13·14-s + 1/4·16-s − 0.917·19-s − 0.447·20-s + 1.70·22-s + 2.50·23-s + 3/5·25-s − 1.56·26-s − 0.755·28-s − 0.371·29-s − 0.718·31-s − 0.353·32-s + 1.35·35-s − 1.29·38-s + 1.87·41-s − 1.82·43-s + 0.603·44-s + 3.53·46-s + 1.75·47-s + 6/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1703025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1703025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1703025\)    =    \(3^{4} \cdot 5^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(108.586\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1703025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.062375298\)
\(L(\frac12)\) \(\approx\) \(2.062375298\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
29$C_1$ \( ( 1 + T )^{2} \)
good2$D_{4}$ \( 1 - p T + 3 T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
7$C_4$ \( 1 + 4 T + 10 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 4 T + 34 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_4$ \( 1 - 12 T + 74 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
31$C_4$ \( 1 + 4 T - 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$D_{4}$ \( 1 - 12 T + 98 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 4 T + 78 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$D_{4}$ \( 1 - 4 T + 94 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 4 T + 66 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 8 T + 30 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 12 T + 122 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 20 T + 258 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 4 T + 150 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 8 T + 138 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.631174227195902624716691172400, −9.569735796860283104887902752783, −8.935221445141604486704813754802, −8.886154431504759361613417113661, −8.228094159143384664934506081671, −7.58108352477538053422413409652, −7.13012654704060293700489516664, −7.02024890940965534265027683822, −6.51560178460189214488763299907, −6.14258378482332501032300726916, −5.42031063076244516808654166364, −5.24682186013868870229665504158, −4.50621496327616943337644256350, −4.38427934121461106876595539207, −3.68695708865252579033773835856, −3.61131050761625910666601968286, −2.90236261582425638504990454802, −2.55173832700983347070171173196, −1.47727387568019680231634409241, −0.48854540853707181561886723604, 0.48854540853707181561886723604, 1.47727387568019680231634409241, 2.55173832700983347070171173196, 2.90236261582425638504990454802, 3.61131050761625910666601968286, 3.68695708865252579033773835856, 4.38427934121461106876595539207, 4.50621496327616943337644256350, 5.24682186013868870229665504158, 5.42031063076244516808654166364, 6.14258378482332501032300726916, 6.51560178460189214488763299907, 7.02024890940965534265027683822, 7.13012654704060293700489516664, 7.58108352477538053422413409652, 8.228094159143384664934506081671, 8.886154431504759361613417113661, 8.935221445141604486704813754802, 9.569735796860283104887902752783, 9.631174227195902624716691172400

Graph of the $Z$-function along the critical line