L(s) = 1 | − 2·7-s + 2·13-s − 16-s + 2·23-s − 25-s + 2·49-s + 2·53-s + 2·67-s − 2·83-s − 4·91-s − 2·103-s − 2·107-s + 2·112-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 4·161-s + 163-s + 167-s + 2·169-s + 173-s + 2·175-s + ⋯ |
L(s) = 1 | − 2·7-s + 2·13-s − 16-s + 2·23-s − 25-s + 2·49-s + 2·53-s + 2·67-s − 2·83-s − 4·91-s − 2·103-s − 2·107-s + 2·112-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 4·161-s + 163-s + 167-s + 2·169-s + 173-s + 2·175-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1703025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1703025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8537831502\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8537831502\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.838494888648135015458781081418, −9.656032733823675555912549513925, −9.321189407297538903634678514303, −8.713964683257326198593180607220, −8.650729164496488770198983932516, −8.235167077384079541482623192683, −7.32418807031249877466122374417, −7.20836192124090762125305406272, −6.54658043699249328741430300525, −6.53920060225715955635184696216, −5.99638669612119762934698929537, −5.51342830395093572867571532635, −5.15327193117871385703819638045, −4.31278416644434131834467802188, −3.76001498082527382282625424920, −3.72951469275092571050344583144, −2.83925183425261035585244694899, −2.72896600927028467486062128253, −1.70273985209171435836332150353, −0.823605612749546619287545682450,
0.823605612749546619287545682450, 1.70273985209171435836332150353, 2.72896600927028467486062128253, 2.83925183425261035585244694899, 3.72951469275092571050344583144, 3.76001498082527382282625424920, 4.31278416644434131834467802188, 5.15327193117871385703819638045, 5.51342830395093572867571532635, 5.99638669612119762934698929537, 6.53920060225715955635184696216, 6.54658043699249328741430300525, 7.20836192124090762125305406272, 7.32418807031249877466122374417, 8.235167077384079541482623192683, 8.650729164496488770198983932516, 8.713964683257326198593180607220, 9.321189407297538903634678514303, 9.656032733823675555912549513925, 9.838494888648135015458781081418