| L(s) = 1 | − 3-s + 9-s + 6·11-s + 7·17-s − 3·19-s + 2·25-s − 27-s − 6·33-s + 5·41-s + 6·43-s + 12·49-s − 7·51-s + 3·57-s + 6·59-s − 3·67-s − 2·73-s − 2·75-s + 81-s + 3·83-s − 3·89-s + 20·97-s + 6·99-s + 24·107-s − 17·113-s + 9·121-s − 5·123-s + 127-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 1/3·9-s + 1.80·11-s + 1.69·17-s − 0.688·19-s + 2/5·25-s − 0.192·27-s − 1.04·33-s + 0.780·41-s + 0.914·43-s + 12/7·49-s − 0.980·51-s + 0.397·57-s + 0.781·59-s − 0.366·67-s − 0.234·73-s − 0.230·75-s + 1/9·81-s + 0.329·83-s − 0.317·89-s + 2.03·97-s + 0.603·99-s + 2.32·107-s − 1.59·113-s + 9/11·121-s − 0.450·123-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2985984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2985984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.604160138\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.604160138\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.31223106058867353525896226860, −7.24254311670237849119573991962, −6.71654155580355119025432969652, −6.20507519555421431399393840225, −5.92407596023960430986676223883, −5.62911100482890732889840292480, −5.01333722030571743734298653293, −4.53822653777690835873285023150, −4.06484395206324683883123263241, −3.73159570119362893009333688375, −3.24700755921982229163939881433, −2.53182481403187310711377765049, −1.89086257830681134356215499139, −1.14889945150025819819715670316, −0.76867756404403397827169302035,
0.76867756404403397827169302035, 1.14889945150025819819715670316, 1.89086257830681134356215499139, 2.53182481403187310711377765049, 3.24700755921982229163939881433, 3.73159570119362893009333688375, 4.06484395206324683883123263241, 4.53822653777690835873285023150, 5.01333722030571743734298653293, 5.62911100482890732889840292480, 5.92407596023960430986676223883, 6.20507519555421431399393840225, 6.71654155580355119025432969652, 7.24254311670237849119573991962, 7.31223106058867353525896226860