Properties

Label 4-12e4-1.1-c8e2-0-2
Degree $4$
Conductor $20736$
Sign $1$
Analytic cond. $3441.29$
Root an. cond. $7.65914$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.45e3·5-s + 7.80e4·13-s + 1.31e5·17-s + 7.99e5·25-s − 4.04e5·29-s − 3.75e6·37-s − 6.18e6·41-s + 2.19e6·49-s + 2.13e6·53-s + 3.43e7·61-s − 1.13e8·65-s − 1.06e8·73-s − 1.91e8·85-s − 1.73e8·89-s − 1.47e8·97-s − 3.82e8·101-s + 1.37e8·109-s − 6.61e7·113-s + 2.52e8·121-s + 1.70e8·125-s + 127-s + 131-s + 137-s + 139-s + 5.86e8·145-s + 149-s + 151-s + ⋯
L(s)  = 1  − 2.32·5-s + 2.73·13-s + 1.57·17-s + 2.04·25-s − 0.571·29-s − 2.00·37-s − 2.18·41-s + 0.380·49-s + 0.270·53-s + 2.47·61-s − 6.35·65-s − 3.75·73-s − 3.66·85-s − 2.76·89-s − 1.66·97-s − 3.67·101-s + 0.972·109-s − 0.405·113-s + 1.17·121-s + 0.700·125-s + 1.32·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20736 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20736 ^{s/2} \, \Gamma_{\C}(s+4)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(20736\)    =    \(2^{8} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(3441.29\)
Root analytic conductor: \(7.65914\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 20736,\ (\ :4, 4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.5148691633\)
\(L(\frac12)\) \(\approx\) \(0.5148691633\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 + 726 T + p^{8} T^{2} )^{2} \)
7$C_2^2$ \( 1 - 914 p^{4} T^{2} + p^{16} T^{4} \)
11$C_2^2$ \( 1 - 252323090 T^{2} + p^{16} T^{4} \)
13$C_2$ \( ( 1 - 39034 T + p^{8} T^{2} )^{2} \)
17$C_2$ \( ( 1 - 65814 T + p^{8} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 17000201234 T^{2} + p^{16} T^{4} \)
23$C_2^2$ \( 1 + 95455358590 T^{2} + p^{16} T^{4} \)
29$C_2$ \( ( 1 + 202062 T + p^{8} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 276239804882 T^{2} + p^{16} T^{4} \)
37$C_2$ \( ( 1 + 1876030 T + p^{8} T^{2} )^{2} \)
41$C_2$ \( ( 1 + 3091050 T + p^{8} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 18251245763090 T^{2} + p^{16} T^{4} \)
47$C_2^2$ \( 1 - 7214640194114 T^{2} + p^{16} T^{4} \)
53$C_2$ \( ( 1 - 1066482 T + p^{8} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 260442349515410 T^{2} + p^{16} T^{4} \)
61$C_2$ \( ( 1 - 17154194 T + p^{8} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 59866697031314 T^{2} + p^{16} T^{4} \)
71$C_2^2$ \( 1 + 295210326091390 T^{2} + p^{16} T^{4} \)
73$C_2$ \( ( 1 + 53286014 T + p^{8} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 2700438986177234 T^{2} + p^{16} T^{4} \)
83$C_2^2$ \( 1 - 4443915113493650 T^{2} + p^{16} T^{4} \)
89$C_2$ \( ( 1 + 86667234 T + p^{8} T^{2} )^{2} \)
97$C_2$ \( ( 1 + 73901822 T + p^{8} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.24332434150722792388088570233, −11.23588028393465378454250933998, −11.21474285187317208649225378273, −10.22760799966659563517862059299, −10.07991383198158764479110911142, −8.785302677587838440953240196590, −8.681876505504639995946102334657, −8.131624285403376019852162878292, −7.81770812513077481574615372421, −6.99894372701087408169432808351, −6.76856177848605040873031603738, −5.55663056819985722961458157232, −5.54566028193437022397373300271, −4.23190489262732324403069674012, −3.91848734507428364204258636077, −3.47396882675293710578096509076, −3.07669278746858495999326622779, −1.52895582506519606598232654234, −1.18703710312566985900498957512, −0.20706452938897119757122387540, 0.20706452938897119757122387540, 1.18703710312566985900498957512, 1.52895582506519606598232654234, 3.07669278746858495999326622779, 3.47396882675293710578096509076, 3.91848734507428364204258636077, 4.23190489262732324403069674012, 5.54566028193437022397373300271, 5.55663056819985722961458157232, 6.76856177848605040873031603738, 6.99894372701087408169432808351, 7.81770812513077481574615372421, 8.131624285403376019852162878292, 8.681876505504639995946102334657, 8.785302677587838440953240196590, 10.07991383198158764479110911142, 10.22760799966659563517862059299, 11.21474285187317208649225378273, 11.23588028393465378454250933998, 12.24332434150722792388088570233

Graph of the $Z$-function along the critical line