| L(s) = 1 | + 3-s − 2·5-s − 4·7-s + 9-s − 4·11-s − 2·15-s + 2·17-s + 12·19-s − 4·21-s + 8·23-s − 6·25-s + 27-s + 6·29-s − 12·31-s − 4·33-s + 8·35-s − 4·37-s − 6·41-s + 4·43-s − 2·45-s + 2·49-s + 2·51-s − 2·53-s + 8·55-s + 12·57-s − 4·59-s + 12·61-s + ⋯ |
| L(s) = 1 | + 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s − 1.20·11-s − 0.516·15-s + 0.485·17-s + 2.75·19-s − 0.872·21-s + 1.66·23-s − 6/5·25-s + 0.192·27-s + 1.11·29-s − 2.15·31-s − 0.696·33-s + 1.35·35-s − 0.657·37-s − 0.937·41-s + 0.609·43-s − 0.298·45-s + 2/7·49-s + 0.280·51-s − 0.274·53-s + 1.07·55-s + 1.58·57-s − 0.520·59-s + 1.53·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.5909322453\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5909322453\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.0038467807, −18.8585099876, −18.0808264901, −17.6873258241, −16.5594222959, −16.2503860035, −15.6969681316, −15.5766594288, −14.7395675207, −13.9963410512, −13.4092975284, −13.0105598262, −12.3221586340, −11.7743766738, −11.0205906871, −10.1744110310, −9.65679775515, −9.11342494550, −8.17328234983, −7.26958585489, −7.26646731082, −5.80268955255, −5.01357758336, −3.44334336791, −3.14826068230,
3.14826068230, 3.44334336791, 5.01357758336, 5.80268955255, 7.26646731082, 7.26958585489, 8.17328234983, 9.11342494550, 9.65679775515, 10.1744110310, 11.0205906871, 11.7743766738, 12.3221586340, 13.0105598262, 13.4092975284, 13.9963410512, 14.7395675207, 15.5766594288, 15.6969681316, 16.2503860035, 16.5594222959, 17.6873258241, 18.0808264901, 18.8585099876, 19.0038467807