Properties

Label 4-12e3-1.1-c1e2-0-2
Degree $4$
Conductor $1728$
Sign $1$
Analytic cond. $0.110178$
Root an. cond. $0.576135$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s − 4·7-s + 9-s − 4·11-s − 2·15-s + 2·17-s + 12·19-s − 4·21-s + 8·23-s − 6·25-s + 27-s + 6·29-s − 12·31-s − 4·33-s + 8·35-s − 4·37-s − 6·41-s + 4·43-s − 2·45-s + 2·49-s + 2·51-s − 2·53-s + 8·55-s + 12·57-s − 4·59-s + 12·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s − 1.20·11-s − 0.516·15-s + 0.485·17-s + 2.75·19-s − 0.872·21-s + 1.66·23-s − 6/5·25-s + 0.192·27-s + 1.11·29-s − 2.15·31-s − 0.696·33-s + 1.35·35-s − 0.657·37-s − 0.937·41-s + 0.609·43-s − 0.298·45-s + 2/7·49-s + 0.280·51-s − 0.274·53-s + 1.07·55-s + 1.58·57-s − 0.520·59-s + 1.53·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(0.110178\)
Root analytic conductor: \(0.576135\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1728,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5909322453\)
\(L(\frac12)\) \(\approx\) \(0.5909322453\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
good5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.c_k
7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.7.e_o
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.11.e_w
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.13.a_w
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \) 2.17.ac_bi
19$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) 2.19.am_cs
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.23.ai_bu
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) 2.29.ag_cg
31$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.31.m_dq
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.37.e_o
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.41.g_de
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.ae_cc
47$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.47.a_dq
53$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.53.c_ec
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.59.e_eo
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.61.am_dq
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.67.m_cs
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.71.i_fm
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.73.a_bu
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.79.ae_ew
83$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.83.ae_gk
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.89.g_gw
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.97.aq_io
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.0038467807, −18.8585099876, −18.0808264901, −17.6873258241, −16.5594222959, −16.2503860035, −15.6969681316, −15.5766594288, −14.7395675207, −13.9963410512, −13.4092975284, −13.0105598262, −12.3221586340, −11.7743766738, −11.0205906871, −10.1744110310, −9.65679775515, −9.11342494550, −8.17328234983, −7.26958585489, −7.26646731082, −5.80268955255, −5.01357758336, −3.44334336791, −3.14826068230, 3.14826068230, 3.44334336791, 5.01357758336, 5.80268955255, 7.26646731082, 7.26958585489, 8.17328234983, 9.11342494550, 9.65679775515, 10.1744110310, 11.0205906871, 11.7743766738, 12.3221586340, 13.0105598262, 13.4092975284, 13.9963410512, 14.7395675207, 15.5766594288, 15.6969681316, 16.2503860035, 16.5594222959, 17.6873258241, 18.0808264901, 18.8585099876, 19.0038467807

Graph of the $Z$-function along the critical line