Properties

Label 4-1280e2-1.1-c1e2-0-20
Degree $4$
Conductor $1638400$
Sign $1$
Analytic cond. $104.465$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s − 2·7-s + 4·11-s − 4·15-s + 8·19-s − 4·21-s − 2·23-s + 3·25-s − 2·27-s + 4·31-s + 8·33-s + 4·35-s − 4·37-s + 4·41-s + 14·43-s − 10·47-s − 8·49-s + 16·53-s − 8·55-s + 16·57-s + 8·59-s + 4·61-s + 18·67-s − 4·69-s + 4·71-s − 8·73-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.894·5-s − 0.755·7-s + 1.20·11-s − 1.03·15-s + 1.83·19-s − 0.872·21-s − 0.417·23-s + 3/5·25-s − 0.384·27-s + 0.718·31-s + 1.39·33-s + 0.676·35-s − 0.657·37-s + 0.624·41-s + 2.13·43-s − 1.45·47-s − 8/7·49-s + 2.19·53-s − 1.07·55-s + 2.11·57-s + 1.04·59-s + 0.512·61-s + 2.19·67-s − 0.481·69-s + 0.474·71-s − 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1638400\)    =    \(2^{16} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(104.465\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1638400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.697250844\)
\(L(\frac12)\) \(\approx\) \(2.697250844\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
good3$D_{4}$ \( 1 - 2 T + 4 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 2 T + 12 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 8 T + 42 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 2 T + 20 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$D_{4}$ \( 1 - 4 T + 74 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 14 T + 132 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 10 T + 116 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 16 T + 158 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 8 T + 122 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 4 T + 78 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 18 T + 212 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 4 T + 134 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 8 T + 150 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 16 T + 174 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 6 T + 172 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 4 T + 134 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 8 T + 102 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.543729856134368219682187800953, −9.485390641777359016768945726897, −9.106596460467922606661847011570, −8.672714553394289769313921727188, −8.174740303887078720907425032421, −7.994308452090982718640075283941, −7.54198666089941367045483251094, −7.04798069647412296691920975021, −6.55990382620793343410694020875, −6.46542553214848439283986566875, −5.46888555848031269390399544413, −5.42384512169383981413181618519, −4.63190343746558618125675085263, −3.94707571883818012089443160324, −3.72168676285837127845647845823, −3.41127724929545797944794431389, −2.65589433541991244572373284709, −2.50478899943272120890314001504, −1.37191962178184502383989300481, −0.69756775374337419424295897806, 0.69756775374337419424295897806, 1.37191962178184502383989300481, 2.50478899943272120890314001504, 2.65589433541991244572373284709, 3.41127724929545797944794431389, 3.72168676285837127845647845823, 3.94707571883818012089443160324, 4.63190343746558618125675085263, 5.42384512169383981413181618519, 5.46888555848031269390399544413, 6.46542553214848439283986566875, 6.55990382620793343410694020875, 7.04798069647412296691920975021, 7.54198666089941367045483251094, 7.994308452090982718640075283941, 8.174740303887078720907425032421, 8.672714553394289769313921727188, 9.106596460467922606661847011570, 9.485390641777359016768945726897, 9.543729856134368219682187800953

Graph of the $Z$-function along the critical line