Properties

Label 4-1280e2-1.1-c0e2-0-4
Degree $4$
Conductor $1638400$
Sign $1$
Analytic cond. $0.408069$
Root an. cond. $0.799251$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s − 25-s + 4·41-s − 2·49-s + 3·81-s − 4·89-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 2·225-s + ⋯
L(s)  = 1  + 2·9-s − 25-s + 4·41-s − 2·49-s + 3·81-s − 4·89-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 2·225-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1638400\)    =    \(2^{16} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.408069\)
Root analytic conductor: \(0.799251\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1638400,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.280823156\)
\(L(\frac12)\) \(\approx\) \(1.280823156\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
good3$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$ \( ( 1 - T )^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_1$ \( ( 1 + T )^{4} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.952380009061971476016893250330, −9.667459165055266968595816369154, −9.362415640710904540750174732075, −9.081758883693930174934303337483, −8.246088991136250399594171153945, −8.064006775761831723103436634520, −7.51041393700793237534338313363, −7.33608252330103242552435231391, −6.83982491707451663541364549824, −6.39194979146782392669591705024, −5.93330150882845923892834145932, −5.54359395567518135212106836468, −4.82352186882573125275769387637, −4.50307621547822240437210255771, −3.97423021975834343415153124354, −3.82502464749591129704786151542, −2.89733515607916253952647196850, −2.38980190813354691460753359718, −1.64330031213782616999717196204, −1.12985572546244192274549107844, 1.12985572546244192274549107844, 1.64330031213782616999717196204, 2.38980190813354691460753359718, 2.89733515607916253952647196850, 3.82502464749591129704786151542, 3.97423021975834343415153124354, 4.50307621547822240437210255771, 4.82352186882573125275769387637, 5.54359395567518135212106836468, 5.93330150882845923892834145932, 6.39194979146782392669591705024, 6.83982491707451663541364549824, 7.33608252330103242552435231391, 7.51041393700793237534338313363, 8.064006775761831723103436634520, 8.246088991136250399594171153945, 9.081758883693930174934303337483, 9.362415640710904540750174732075, 9.667459165055266968595816369154, 9.952380009061971476016893250330

Graph of the $Z$-function along the critical line