Properties

Label 4-1264e2-1.1-c0e2-0-1
Degree $4$
Conductor $1597696$
Sign $1$
Analytic cond. $0.397931$
Root an. cond. $0.794240$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·9-s + 11-s − 13-s + 19-s + 23-s + 31-s − 2·45-s + 2·49-s − 55-s + 65-s + 67-s − 73-s − 2·79-s + 3·81-s − 4·83-s − 89-s − 95-s − 97-s + 2·99-s − 101-s − 115-s − 2·117-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 5-s + 2·9-s + 11-s − 13-s + 19-s + 23-s + 31-s − 2·45-s + 2·49-s − 55-s + 65-s + 67-s − 73-s − 2·79-s + 3·81-s − 4·83-s − 89-s − 95-s − 97-s + 2·99-s − 101-s − 115-s − 2·117-s + 127-s + 131-s + 137-s + 139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1597696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1597696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1597696\)    =    \(2^{8} \cdot 79^{2}\)
Sign: $1$
Analytic conductor: \(0.397931\)
Root analytic conductor: \(0.794240\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1597696,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.133916854\)
\(L(\frac12)\) \(\approx\) \(1.133916854\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
79$C_1$ \( ( 1 + T )^{2} \)
good3$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
5$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
13$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
23$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
83$C_1$ \( ( 1 + T )^{4} \)
89$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
97$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.907135892367631838250896954216, −9.829801807003953157478102487683, −9.325465599260351693255651923396, −8.967700477899938268555759518315, −8.294433615856057765424289976892, −8.154355668905124952404274844364, −7.30659079279449025668433750082, −7.25544407963965417200099046680, −7.05387530454843688936240317915, −6.65483324343715194501014118334, −5.80660239597333349970510981606, −5.53287242584438726055711694532, −4.64923839918670576285285811113, −4.60149991100736925799271846309, −4.01921444231014817335883723546, −3.78371449567357649697179012086, −2.99073913439453756868555005967, −2.51719698111865183022931018397, −1.48750417157765528420555652390, −1.11475419861668747198982774317, 1.11475419861668747198982774317, 1.48750417157765528420555652390, 2.51719698111865183022931018397, 2.99073913439453756868555005967, 3.78371449567357649697179012086, 4.01921444231014817335883723546, 4.60149991100736925799271846309, 4.64923839918670576285285811113, 5.53287242584438726055711694532, 5.80660239597333349970510981606, 6.65483324343715194501014118334, 7.05387530454843688936240317915, 7.25544407963965417200099046680, 7.30659079279449025668433750082, 8.154355668905124952404274844364, 8.294433615856057765424289976892, 8.967700477899938268555759518315, 9.325465599260351693255651923396, 9.829801807003953157478102487683, 9.907135892367631838250896954216

Graph of the $Z$-function along the critical line