Properties

Label 4-1216800-1.1-c1e2-0-33
Degree $4$
Conductor $1216800$
Sign $-1$
Analytic cond. $77.5842$
Root an. cond. $2.96785$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 8-s + 9-s − 10-s − 13-s + 16-s + 10·17-s − 18-s + 20-s − 4·25-s + 26-s − 5·29-s − 32-s − 10·34-s + 36-s − 11·37-s − 40-s − 10·41-s + 45-s − 5·49-s + 4·50-s − 52-s − 10·53-s + 5·58-s + 11·61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.277·13-s + 1/4·16-s + 2.42·17-s − 0.235·18-s + 0.223·20-s − 4/5·25-s + 0.196·26-s − 0.928·29-s − 0.176·32-s − 1.71·34-s + 1/6·36-s − 1.80·37-s − 0.158·40-s − 1.56·41-s + 0.149·45-s − 5/7·49-s + 0.565·50-s − 0.138·52-s − 1.37·53-s + 0.656·58-s + 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1216800\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(77.5842\)
Root analytic conductor: \(2.96785\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1216800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 - T + p T^{2} \)
13$C_2$ \( 1 + T + p T^{2} \)
good7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 27 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 97 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 60 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.941240024608645589957210724807, −7.31428256599479068367069784014, −7.11178419796713438551212611582, −6.57242273144600710147726039383, −6.08833027031649805450581993080, −5.50347750620352854708632162019, −5.31842023025557393387272362078, −4.84212174265779990996076905865, −3.93169739491372396993017139924, −3.49134472837876086602143613287, −3.16459458813085296521095826117, −2.30063289439104502240707585530, −1.68352170340396195432400362333, −1.22756936462628483134248846676, 0, 1.22756936462628483134248846676, 1.68352170340396195432400362333, 2.30063289439104502240707585530, 3.16459458813085296521095826117, 3.49134472837876086602143613287, 3.93169739491372396993017139924, 4.84212174265779990996076905865, 5.31842023025557393387272362078, 5.50347750620352854708632162019, 6.08833027031649805450581993080, 6.57242273144600710147726039383, 7.11178419796713438551212611582, 7.31428256599479068367069784014, 7.941240024608645589957210724807

Graph of the $Z$-function along the critical line