Properties

Label 4-1216800-1.1-c1e2-0-18
Degree $4$
Conductor $1216800$
Sign $1$
Analytic cond. $77.5842$
Root an. cond. $2.96785$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 8-s + 9-s − 10-s + 6·13-s + 16-s + 10·17-s + 18-s − 20-s − 4·25-s + 6·26-s − 5·29-s + 32-s + 10·34-s + 36-s + 11·37-s − 40-s + 10·41-s − 45-s − 5·49-s − 4·50-s + 6·52-s − 10·53-s − 5·58-s + 11·61-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.66·13-s + 1/4·16-s + 2.42·17-s + 0.235·18-s − 0.223·20-s − 4/5·25-s + 1.17·26-s − 0.928·29-s + 0.176·32-s + 1.71·34-s + 1/6·36-s + 1.80·37-s − 0.158·40-s + 1.56·41-s − 0.149·45-s − 5/7·49-s − 0.565·50-s + 0.832·52-s − 1.37·53-s − 0.656·58-s + 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1216800\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(77.5842\)
Root analytic conductor: \(2.96785\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1216800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.104964817\)
\(L(\frac12)\) \(\approx\) \(4.104964817\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 + T + p T^{2} \)
13$C_2$ \( 1 - 6 T + p T^{2} \)
good7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 27 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 97 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 60 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81530839800383487204844214728, −7.58597684354092766829123996559, −7.36941811646773336654414406383, −6.50892715772454504342662700395, −6.07830237495320569941315571411, −5.91934491513942361032553767019, −5.44780214858041481982822081593, −4.83107423436579488071040934704, −4.32407261734453635202004720678, −3.72563320181881104358908276390, −3.56942757613183001924271165240, −3.03521698397683129461770642663, −2.25406782185316202233815114242, −1.42080191061395483829455265875, −0.912061386349406761181507385199, 0.912061386349406761181507385199, 1.42080191061395483829455265875, 2.25406782185316202233815114242, 3.03521698397683129461770642663, 3.56942757613183001924271165240, 3.72563320181881104358908276390, 4.32407261734453635202004720678, 4.83107423436579488071040934704, 5.44780214858041481982822081593, 5.91934491513942361032553767019, 6.07830237495320569941315571411, 6.50892715772454504342662700395, 7.36941811646773336654414406383, 7.58597684354092766829123996559, 7.81530839800383487204844214728

Graph of the $Z$-function along the critical line