Properties

Label 4-1216800-1.1-c1e2-0-14
Degree $4$
Conductor $1216800$
Sign $1$
Analytic cond. $77.5842$
Root an. cond. $2.96785$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s − 8-s − 9-s − 2·10-s + 13-s + 16-s + 18-s + 2·20-s − 25-s − 26-s + 14·29-s − 32-s − 36-s + 14·37-s − 2·40-s + 8·41-s − 2·45-s + 9·49-s + 50-s + 52-s − 4·53-s − 14·58-s + 4·61-s + 64-s + 2·65-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s − 1/3·9-s − 0.632·10-s + 0.277·13-s + 1/4·16-s + 0.235·18-s + 0.447·20-s − 1/5·25-s − 0.196·26-s + 2.59·29-s − 0.176·32-s − 1/6·36-s + 2.30·37-s − 0.316·40-s + 1.24·41-s − 0.298·45-s + 9/7·49-s + 0.141·50-s + 0.138·52-s − 0.549·53-s − 1.83·58-s + 0.512·61-s + 1/8·64-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1216800\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(77.5842\)
Root analytic conductor: \(2.96785\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1216800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.977312778\)
\(L(\frac12)\) \(\approx\) \(1.977312778\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 - 2 T + p T^{2} \)
13$C_2$ \( 1 - T + p T^{2} \)
good7$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 27 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 17 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2^2$ \( 1 + 41 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 65 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 119 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.968524233946697847762605196727, −7.80523321874401660046491367151, −7.11853937618382367033690194995, −6.71352017423295661998284998666, −6.23832577849018197974029663600, −5.89227290181790023043969529447, −5.65154724896199128000363529863, −4.82190555880230931711220225865, −4.50119107836766960602317785734, −3.87338505534032842973611046811, −3.13136137098566183715553529307, −2.50734690717421409848107112046, −2.35272847404389910766238459806, −1.31263696105008514097478225671, −0.77682140340402947244140202237, 0.77682140340402947244140202237, 1.31263696105008514097478225671, 2.35272847404389910766238459806, 2.50734690717421409848107112046, 3.13136137098566183715553529307, 3.87338505534032842973611046811, 4.50119107836766960602317785734, 4.82190555880230931711220225865, 5.65154724896199128000363529863, 5.89227290181790023043969529447, 6.23832577849018197974029663600, 6.71352017423295661998284998666, 7.11853937618382367033690194995, 7.80523321874401660046491367151, 7.968524233946697847762605196727

Graph of the $Z$-function along the critical line