Properties

Label 4-1216800-1.1-c1e2-0-12
Degree $4$
Conductor $1216800$
Sign $-1$
Analytic cond. $77.5842$
Root an. cond. $2.96785$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s − 8-s − 9-s + 3·10-s − 7·13-s + 16-s + 18-s − 3·20-s + 4·25-s + 7·26-s − 9·29-s − 32-s − 36-s + 11·37-s + 3·40-s + 6·41-s + 3·45-s − 49-s − 4·50-s − 7·52-s − 12·53-s + 9·58-s + 17·61-s + 64-s + 21·65-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.353·8-s − 1/3·9-s + 0.948·10-s − 1.94·13-s + 1/4·16-s + 0.235·18-s − 0.670·20-s + 4/5·25-s + 1.37·26-s − 1.67·29-s − 0.176·32-s − 1/6·36-s + 1.80·37-s + 0.474·40-s + 0.937·41-s + 0.447·45-s − 1/7·49-s − 0.565·50-s − 0.970·52-s − 1.64·53-s + 1.18·58-s + 2.17·61-s + 1/8·64-s + 2.60·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1216800\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(77.5842\)
Root analytic conductor: \(2.96785\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1216800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
13$C_2$ \( 1 + 7 T + p T^{2} \)
good7$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 55 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 148 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82451020595095970133566968640, −7.44203474984014006099014151673, −7.16822134982401620207899531132, −6.71557647674797165585006170954, −6.09862799998149224218924874677, −5.59836643825249761309284794153, −5.12553668452881373284929837001, −4.55446523910371041766348822471, −4.15778203907672684885602189452, −3.59767214885527792660960441344, −2.98201133625833971950912951738, −2.47581659775700771183633529380, −1.90547611207714553514661334469, −0.74830644685183970570992956731, 0, 0.74830644685183970570992956731, 1.90547611207714553514661334469, 2.47581659775700771183633529380, 2.98201133625833971950912951738, 3.59767214885527792660960441344, 4.15778203907672684885602189452, 4.55446523910371041766348822471, 5.12553668452881373284929837001, 5.59836643825249761309284794153, 6.09862799998149224218924874677, 6.71557647674797165585006170954, 7.16822134982401620207899531132, 7.44203474984014006099014151673, 7.82451020595095970133566968640

Graph of the $Z$-function along the critical line