L(s) = 1 | − 2·3-s + 9-s + 4·13-s + 12·23-s + 25-s + 4·27-s + 4·37-s − 8·39-s − 12·47-s − 10·49-s + 24·59-s + 4·61-s − 24·69-s − 24·71-s + 4·73-s − 2·75-s − 11·81-s + 12·83-s + 4·97-s − 12·107-s + 4·109-s − 8·111-s + 4·117-s − 22·121-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/3·9-s + 1.10·13-s + 2.50·23-s + 1/5·25-s + 0.769·27-s + 0.657·37-s − 1.28·39-s − 1.75·47-s − 1.42·49-s + 3.12·59-s + 0.512·61-s − 2.88·69-s − 2.84·71-s + 0.468·73-s − 0.230·75-s − 1.22·81-s + 1.31·83-s + 0.406·97-s − 1.16·107-s + 0.383·109-s − 0.759·111-s + 0.369·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7675963187\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7675963187\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( 1 + 2 T + p T^{2} \) |
| 5 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 7 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23781842834568778738111021684, −10.83473950301065015207539180976, −10.22754300302114228185381817663, −9.633261704500415779063377753491, −8.847850276232423443211930888771, −8.552217550781204179646223792184, −7.74818737522785607031159368119, −6.88656092970954199609923322632, −6.57891116465648258947670054106, −5.90138678053477774939394585997, −5.17606419420266207753384183426, −4.78130792717525308450176413839, −3.70610300459195515417889608627, −2.84705552122166969163585152299, −1.16915866227454488376692012454,
1.16915866227454488376692012454, 2.84705552122166969163585152299, 3.70610300459195515417889608627, 4.78130792717525308450176413839, 5.17606419420266207753384183426, 5.90138678053477774939394585997, 6.57891116465648258947670054106, 6.88656092970954199609923322632, 7.74818737522785607031159368119, 8.552217550781204179646223792184, 8.847850276232423443211930888771, 9.633261704500415779063377753491, 10.22754300302114228185381817663, 10.83473950301065015207539180976, 11.23781842834568778738111021684