Properties

Label 4-120e2-1.1-c1e2-0-14
Degree $4$
Conductor $14400$
Sign $1$
Analytic cond. $0.918156$
Root an. cond. $0.978879$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s + 4·13-s − 12·23-s + 25-s − 4·27-s + 4·37-s + 8·39-s + 12·47-s − 10·49-s − 24·59-s + 4·61-s − 24·69-s + 24·71-s + 4·73-s + 2·75-s − 11·81-s − 12·83-s + 4·97-s + 12·107-s + 4·109-s + 8·111-s + 4·117-s − 22·121-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s + 1.10·13-s − 2.50·23-s + 1/5·25-s − 0.769·27-s + 0.657·37-s + 1.28·39-s + 1.75·47-s − 1.42·49-s − 3.12·59-s + 0.512·61-s − 2.88·69-s + 2.84·71-s + 0.468·73-s + 0.230·75-s − 1.22·81-s − 1.31·83-s + 0.406·97-s + 1.16·107-s + 0.383·109-s + 0.759·111-s + 0.369·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.918156\)
Root analytic conductor: \(0.978879\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.492977957\)
\(L(\frac12)\) \(\approx\) \(1.492977957\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.10973086408237495845181170606, −10.66869217043212474435745329357, −9.749524176059453166876684221310, −9.683565298540966130897522415203, −8.740293324354028093320034492248, −8.536040373596851277524077678909, −7.71273110823499542846308181544, −7.64589778281564359800589548721, −6.27087624192875571051851265258, −6.21444115782927123192608967686, −5.19647848534431193907436500640, −4.12250433368686324236236368171, −3.71119793411816721603957340078, −2.76929890617261215013507568311, −1.81793015252092636076156145980, 1.81793015252092636076156145980, 2.76929890617261215013507568311, 3.71119793411816721603957340078, 4.12250433368686324236236368171, 5.19647848534431193907436500640, 6.21444115782927123192608967686, 6.27087624192875571051851265258, 7.64589778281564359800589548721, 7.71273110823499542846308181544, 8.536040373596851277524077678909, 8.740293324354028093320034492248, 9.683565298540966130897522415203, 9.749524176059453166876684221310, 10.66869217043212474435745329357, 11.10973086408237495845181170606

Graph of the $Z$-function along the critical line