L(s) = 1 | − 9·9-s − 144·11-s + 104·19-s + 156·29-s − 240·31-s + 724·41-s + 670·49-s + 1.39e3·59-s + 444·61-s − 192·71-s − 1.26e3·79-s + 81·81-s − 1.98e3·89-s + 1.29e3·99-s + 1.78e3·101-s − 892·109-s + 1.28e4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.35e3·169-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 3.94·11-s + 1.25·19-s + 0.998·29-s − 1.39·31-s + 2.75·41-s + 1.95·49-s + 3.07·59-s + 0.931·61-s − 0.320·71-s − 1.80·79-s + 1/9·81-s − 2.36·89-s + 1.31·99-s + 1.75·101-s − 0.783·109-s + 9.68·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 1.98·169-s + ⋯ |
Λ(s)=(=(1440000s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1440000s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1440000
= 28⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
5012.96 |
Root analytic conductor: |
8.41440 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1440000, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
2.264293366 |
L(21) |
≈ |
2.264293366 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+p2T2 |
| 5 | | 1 |
good | 7 | C22 | 1−670T2+p6T4 |
| 11 | C2 | (1+72T+p3T2)2 |
| 13 | C22 | 1−4358T2+p6T4 |
| 17 | C22 | 1−8382T2+p6T4 |
| 19 | C2 | (1−52T+p3T2)2 |
| 23 | C22 | 1−1230T2+p6T4 |
| 29 | C2 | (1−78T+p3T2)2 |
| 31 | C2 | (1+120T+p3T2)2 |
| 37 | C22 | 1−78806T2+p6T4 |
| 41 | C2 | (1−362T+p3T2)2 |
| 43 | C22 | 1+75242T2+p6T4 |
| 47 | C22 | 1−129246T2+p6T4 |
| 53 | C22 | 1+151146T2+p6T4 |
| 59 | C2 | (1−696T+p3T2)2 |
| 61 | C2 | (1−222T+p3T2)2 |
| 67 | C22 | 1−601510T2+p6T4 |
| 71 | C2 | (1+96T+p3T2)2 |
| 73 | C22 | 1−746350T2+p6T4 |
| 79 | C2 | (1+8pT+p3T2)2 |
| 83 | C22 | 1−769030T2+p6T4 |
| 89 | C2 | (1+994T+p3T2)2 |
| 97 | C22 | 1+844610T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.609066596854010172545528747345, −9.255258350569777277372392849833, −8.533539371017494799688240676265, −8.349193388379483157296106515950, −7.953878536801475725799277886176, −7.53426842894149902147168880608, −7.14622652905843389522028824439, −7.03325660006936345752057073369, −5.85056114457770477083531204156, −5.70344186151030391049855193375, −5.38922975006984331840333063816, −5.14926164563545981143445552410, −4.40758048122428180016047963412, −4.02672595316898702116303425886, −3.03503269413336474233032630079, −2.90721941915083906025188167616, −2.43971861604042363296237140971, −1.97112195424329039407859023673, −0.61428967038398093731425600990, −0.60206523867416818480962169817,
0.60206523867416818480962169817, 0.61428967038398093731425600990, 1.97112195424329039407859023673, 2.43971861604042363296237140971, 2.90721941915083906025188167616, 3.03503269413336474233032630079, 4.02672595316898702116303425886, 4.40758048122428180016047963412, 5.14926164563545981143445552410, 5.38922975006984331840333063816, 5.70344186151030391049855193375, 5.85056114457770477083531204156, 7.03325660006936345752057073369, 7.14622652905843389522028824439, 7.53426842894149902147168880608, 7.953878536801475725799277886176, 8.349193388379483157296106515950, 8.533539371017494799688240676265, 9.255258350569777277372392849833, 9.609066596854010172545528747345