Properties

Label 4-1200e2-1.1-c1e2-0-3
Degree $4$
Conductor $1440000$
Sign $1$
Analytic cond. $91.8156$
Root an. cond. $3.09548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 6·9-s − 6·11-s + 4·13-s − 12·23-s − 9·27-s + 18·33-s − 16·37-s − 12·39-s + 12·47-s + 14·49-s − 24·59-s + 16·61-s + 36·69-s + 12·71-s − 2·73-s + 9·81-s + 18·83-s − 20·97-s − 36·99-s − 6·107-s − 16·109-s + 48·111-s + 24·117-s + 5·121-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1.73·3-s + 2·9-s − 1.80·11-s + 1.10·13-s − 2.50·23-s − 1.73·27-s + 3.13·33-s − 2.63·37-s − 1.92·39-s + 1.75·47-s + 2·49-s − 3.12·59-s + 2.04·61-s + 4.33·69-s + 1.42·71-s − 0.234·73-s + 81-s + 1.97·83-s − 2.03·97-s − 3.61·99-s − 0.580·107-s − 1.53·109-s + 4.55·111-s + 2.21·117-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1440000\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(91.8156\)
Root analytic conductor: \(3.09548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1200} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1440000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3766121600\)
\(L(\frac12)\) \(\approx\) \(0.3766121600\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T + p T^{2} \)
5 \( 1 \)
good7$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 55 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 151 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24241117420089599362030237578, −9.735622760464094679804352445585, −9.160218818393113271881260638511, −8.764439734700187667739256783256, −8.082374327393994916182205016028, −7.960837988361317902228831190964, −7.48843416880746156683661506366, −6.89091377387839359008903746689, −6.59947152126265751554091188917, −6.04781706637437252987046953342, −5.68392438476744828821678133760, −5.38130014074993360084710856524, −5.10645051458956556813116411809, −4.37457029886652802141706842065, −3.93615750866165581470282315462, −3.56055383961580793173395611144, −2.58519152879164453411555551623, −2.06033238712800569075589944275, −1.29936585137234847375855601110, −0.30969000246082014815069030507, 0.30969000246082014815069030507, 1.29936585137234847375855601110, 2.06033238712800569075589944275, 2.58519152879164453411555551623, 3.56055383961580793173395611144, 3.93615750866165581470282315462, 4.37457029886652802141706842065, 5.10645051458956556813116411809, 5.38130014074993360084710856524, 5.68392438476744828821678133760, 6.04781706637437252987046953342, 6.59947152126265751554091188917, 6.89091377387839359008903746689, 7.48843416880746156683661506366, 7.960837988361317902228831190964, 8.082374327393994916182205016028, 8.764439734700187667739256783256, 9.160218818393113271881260638511, 9.735622760464094679804352445585, 10.24241117420089599362030237578

Graph of the $Z$-function along the critical line