L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s − 9-s + 5·16-s − 2·17-s + 2·18-s − 2·19-s + 2·23-s − 6·32-s + 4·34-s − 3·36-s + 4·38-s − 4·46-s + 2·47-s − 2·61-s + 7·64-s − 6·68-s + 4·72-s − 6·76-s + 81-s + 6·92-s − 4·94-s + 2·109-s − 2·113-s + 4·122-s + 127-s + ⋯ |
L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s − 9-s + 5·16-s − 2·17-s + 2·18-s − 2·19-s + 2·23-s − 6·32-s + 4·34-s − 3·36-s + 4·38-s − 4·46-s + 2·47-s − 2·61-s + 7·64-s − 6·68-s + 4·72-s − 6·76-s + 81-s + 6·92-s − 4·94-s + 2·109-s − 2·113-s + 4·122-s + 127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2827514228\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2827514228\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33627604212210333964710070170, −9.348672313368954692765408602787, −9.251065716201073465975765640428, −8.958819518630306750735421541738, −8.708829157383072054403462914759, −8.162484288652240273544613677108, −8.016274656817931161894764196798, −7.22514497544766569979336867921, −6.97856812361007893798053660801, −6.63894696983814711104810248890, −6.15953677823768216065772613776, −5.86256817537407808931962074365, −5.23600874176043722946185523744, −4.53725946997020161386281139161, −4.02476316341054175305399621095, −3.08946936508653771795112343695, −2.80805086292252744111457222456, −2.19716204253244696663132773602, −1.78190024764347450669228785225, −0.61960754735892546299978320216,
0.61960754735892546299978320216, 1.78190024764347450669228785225, 2.19716204253244696663132773602, 2.80805086292252744111457222456, 3.08946936508653771795112343695, 4.02476316341054175305399621095, 4.53725946997020161386281139161, 5.23600874176043722946185523744, 5.86256817537407808931962074365, 6.15953677823768216065772613776, 6.63894696983814711104810248890, 6.97856812361007893798053660801, 7.22514497544766569979336867921, 8.016274656817931161894764196798, 8.162484288652240273544613677108, 8.708829157383072054403462914759, 8.958819518630306750735421541738, 9.251065716201073465975765640428, 9.348672313368954692765408602787, 10.33627604212210333964710070170