Properties

Label 4-11e3-1.1-c1e2-0-0
Degree $4$
Conductor $1331$
Sign $1$
Analytic cond. $0.0848657$
Root an. cond. $0.539738$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s − 3·9-s + 11-s − 4·15-s − 4·16-s − 2·23-s − 7·25-s + 14·27-s + 14·31-s − 2·33-s + 6·37-s − 6·45-s + 16·47-s + 8·48-s − 10·49-s − 12·53-s + 2·55-s + 10·59-s − 14·67-s + 4·69-s − 6·71-s + 14·75-s − 8·80-s − 4·81-s + 30·89-s − 28·93-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s − 9-s + 0.301·11-s − 1.03·15-s − 16-s − 0.417·23-s − 7/5·25-s + 2.69·27-s + 2.51·31-s − 0.348·33-s + 0.986·37-s − 0.894·45-s + 2.33·47-s + 1.15·48-s − 1.42·49-s − 1.64·53-s + 0.269·55-s + 1.30·59-s − 1.71·67-s + 0.481·69-s − 0.712·71-s + 1.61·75-s − 0.894·80-s − 4/9·81-s + 3.17·89-s − 2.90·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1331\)    =    \(11^{3}\)
Sign: $1$
Analytic conductor: \(0.0848657\)
Root analytic conductor: \(0.539738\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1331,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4466091259\)
\(L(\frac12)\) \(\approx\) \(0.4466091259\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11$C_1$ \( 1 - T \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62205943269834176065110376300, −13.56863905712999451342489435843, −12.33713976074744055894961281844, −11.81631087306955963420628700213, −11.45125861034521058353374083886, −10.76517194615392112496312976161, −10.03550909718107888433464868208, −9.366222803316740054530803267641, −8.603539619290756001226038948684, −7.78789607043645765017922373874, −6.36261389471308870138602900888, −6.23870064789214498217427813253, −5.41175071356617719099292784896, −4.44574490854809981150981932393, −2.63044898935838963010520851422, 2.63044898935838963010520851422, 4.44574490854809981150981932393, 5.41175071356617719099292784896, 6.23870064789214498217427813253, 6.36261389471308870138602900888, 7.78789607043645765017922373874, 8.603539619290756001226038948684, 9.366222803316740054530803267641, 10.03550909718107888433464868208, 10.76517194615392112496312976161, 11.45125861034521058353374083886, 11.81631087306955963420628700213, 12.33713976074744055894961281844, 13.56863905712999451342489435843, 13.62205943269834176065110376300

Graph of the $Z$-function along the critical line