Properties

Label 4-1183e2-1.1-c1e2-0-8
Degree $4$
Conductor $1399489$
Sign $1$
Analytic cond. $89.2326$
Root an. cond. $3.07348$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s − 4·16-s − 8·17-s − 6·23-s + 25-s − 10·29-s + 2·43-s − 49-s − 18·53-s − 20·61-s + 6·79-s + 27·81-s + 28·101-s + 8·103-s − 8·107-s − 6·113-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 24·144-s + 149-s + 151-s + 48·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 2·9-s − 16-s − 1.94·17-s − 1.25·23-s + 1/5·25-s − 1.85·29-s + 0.304·43-s − 1/7·49-s − 2.47·53-s − 2.56·61-s + 0.675·79-s + 3·81-s + 2.78·101-s + 0.788·103-s − 0.773·107-s − 0.564·113-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2·144-s + 0.0819·149-s + 0.0813·151-s + 3.88·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1399489 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1399489 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1399489\)    =    \(7^{2} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(89.2326\)
Root analytic conductor: \(3.07348\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1399489,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2$ \( 1 + T^{2} \)
13 \( 1 \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 59 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 169 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 145 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.342165744759600001177971385751, −9.216434654102498881900676986568, −8.647665992310408386362152389604, −8.605054182995359466452401331806, −7.79564503359671757395302267518, −7.71968146717104930633286583149, −7.08747754694164583198811242244, −6.43564563033490143101557607390, −6.14853283728876422680485728492, −6.00146053406771464552867517460, −5.29015450905288561683676006858, −4.73171856981058939699108533044, −4.54102261865655065215199450947, −3.70358442199176084348655640008, −3.38289976035022851334095946634, −2.58707040853750830679738532681, −2.28058876041277896516478184491, −1.68179844572142180891700624983, 0, 0, 1.68179844572142180891700624983, 2.28058876041277896516478184491, 2.58707040853750830679738532681, 3.38289976035022851334095946634, 3.70358442199176084348655640008, 4.54102261865655065215199450947, 4.73171856981058939699108533044, 5.29015450905288561683676006858, 6.00146053406771464552867517460, 6.14853283728876422680485728492, 6.43564563033490143101557607390, 7.08747754694164583198811242244, 7.71968146717104930633286583149, 7.79564503359671757395302267518, 8.605054182995359466452401331806, 8.647665992310408386362152389604, 9.216434654102498881900676986568, 9.342165744759600001177971385751

Graph of the $Z$-function along the critical line