Properties

Label 4-117e2-1.1-c3e2-0-6
Degree $4$
Conductor $13689$
Sign $1$
Analytic cond. $47.6544$
Root an. cond. $2.62739$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s − 9·3-s + 8·4-s + 19·5-s − 45·6-s + 22·7-s − 5·8-s + 54·9-s + 95·10-s − 16·11-s − 72·12-s + 89·13-s + 110·14-s − 171·15-s − 25·16-s − 131·17-s + 270·18-s + 93·19-s + 152·20-s − 198·21-s − 80·22-s + 138·23-s + 45·24-s + 125·25-s + 445·26-s − 243·27-s + 176·28-s + ⋯
L(s)  = 1  + 1.76·2-s − 1.73·3-s + 4-s + 1.69·5-s − 3.06·6-s + 1.18·7-s − 0.220·8-s + 2·9-s + 3.00·10-s − 0.438·11-s − 1.73·12-s + 1.89·13-s + 2.09·14-s − 2.94·15-s − 0.390·16-s − 1.86·17-s + 3.53·18-s + 1.12·19-s + 1.69·20-s − 2.05·21-s − 0.775·22-s + 1.25·23-s + 0.382·24-s + 25-s + 3.35·26-s − 1.73·27-s + 1.18·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(13689\)    =    \(3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(47.6544\)
Root analytic conductor: \(2.62739\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 13689,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.533686096\)
\(L(\frac12)\) \(\approx\) \(4.533686096\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p^{2} T + p^{3} T^{2} \)
13$C_2$ \( 1 - 89 T + p^{3} T^{2} \)
good2$C_2^2$ \( 1 - 5 T + 17 T^{2} - 5 p^{3} T^{3} + p^{6} T^{4} \)
5$C_2^2$ \( 1 - 19 T + 236 T^{2} - 19 p^{3} T^{3} + p^{6} T^{4} \)
7$C_2$ \( ( 1 - 11 T + p^{3} T^{2} )^{2} \)
11$C_2^2$ \( 1 + 16 T - 1075 T^{2} + 16 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 131 T + 12248 T^{2} + 131 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 93 T + 1790 T^{2} - 93 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2$ \( ( 1 - 3 p T + p^{3} T^{2} )^{2} \)
29$C_2^2$ \( 1 + 86 T - 16993 T^{2} + 86 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 - 173 T + 138 T^{2} - 173 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 - 433 T + p^{3} T^{2} )( 1 + 110 T + p^{3} T^{2} ) \)
41$C_2$ \( ( 1 + 9 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 69 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 369 T + 32338 T^{2} + 369 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 306 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 420 T - 28979 T^{2} - 420 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2$ \( ( 1 + 383 T + p^{3} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 139 T + p^{3} T^{2} )^{2} \)
71$C_2^2$ \( 1 + 237 T - 301742 T^{2} + 237 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2$ \( ( 1 - 518 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 41 T - 491358 T^{2} + 41 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 905 T + 247238 T^{2} - 905 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2^2$ \( 1 - 929 T + 158072 T^{2} - 929 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 + 5 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02207568520840215378439088428, −13.07313953120447257439807382040, −12.60185014128964981424957385202, −11.54201868476541224009115811232, −11.48908193636433939415423736825, −10.83781678622789635124847777719, −10.69670866503310099177834666311, −9.667130061559705103053551657867, −9.310382993033514115339525414673, −8.465660144792896177762803982820, −7.64762381401558634090657408122, −6.59339433084505640016949536693, −6.19733014740808804591266001620, −5.90135868179606925328405833447, −5.11396565235890119933884197765, −4.89109709874297300830467142229, −4.40986171271313169915020271398, −3.32144821236275162403280548928, −1.94240714248798085821633477947, −1.08994227204926132498959958800, 1.08994227204926132498959958800, 1.94240714248798085821633477947, 3.32144821236275162403280548928, 4.40986171271313169915020271398, 4.89109709874297300830467142229, 5.11396565235890119933884197765, 5.90135868179606925328405833447, 6.19733014740808804591266001620, 6.59339433084505640016949536693, 7.64762381401558634090657408122, 8.465660144792896177762803982820, 9.310382993033514115339525414673, 9.667130061559705103053551657867, 10.69670866503310099177834666311, 10.83781678622789635124847777719, 11.48908193636433939415423736825, 11.54201868476541224009115811232, 12.60185014128964981424957385202, 13.07313953120447257439807382040, 14.02207568520840215378439088428

Graph of the $Z$-function along the critical line