Properties

Label 4-117e2-1.1-c3e2-0-10
Degree $4$
Conductor $13689$
Sign $1$
Analytic cond. $47.6544$
Root an. cond. $2.62739$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4-s − 24·5-s − 12·8-s + 48·10-s + 44·11-s − 26·13-s − 11·16-s − 164·17-s + 48·19-s − 24·20-s − 88·22-s − 8·23-s + 238·25-s + 52·26-s − 404·29-s + 40·31-s + 170·32-s + 328·34-s − 100·37-s − 96·38-s + 288·40-s − 200·41-s − 616·43-s + 44·44-s + 16·46-s + 324·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/8·4-s − 2.14·5-s − 0.530·8-s + 1.51·10-s + 1.20·11-s − 0.554·13-s − 0.171·16-s − 2.33·17-s + 0.579·19-s − 0.268·20-s − 0.852·22-s − 0.0725·23-s + 1.90·25-s + 0.392·26-s − 2.58·29-s + 0.231·31-s + 0.939·32-s + 1.65·34-s − 0.444·37-s − 0.409·38-s + 1.13·40-s − 0.761·41-s − 2.18·43-s + 0.150·44-s + 0.0512·46-s + 1.00·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(13689\)    =    \(3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(47.6544\)
Root analytic conductor: \(2.62739\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 13689,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
13$C_1$ \( ( 1 + p T )^{2} \)
good2$D_{4}$ \( 1 + p T + 3 T^{2} + p^{4} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 + 24 T + 338 T^{2} + 24 p^{3} T^{3} + p^{6} T^{4} \)
7$C_2^2$ \( 1 + 90 p T^{2} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 4 p T + 1130 T^{2} - 4 p^{4} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 164 T + 16326 T^{2} + 164 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 48 T + 14238 T^{2} - 48 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 8 T - 7906 T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 404 T + 81518 T^{2} + 404 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 40 T + 50518 T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 100 T + 92830 T^{2} + 100 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 200 T + 24138 T^{2} + 200 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 616 T + 216022 T^{2} + 616 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 324 T + 219554 T^{2} - 324 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 164 T + 102878 T^{2} - 164 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 140 T + 393258 T^{2} + 140 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 628 T + 293614 T^{2} - 628 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 472 T + 252622 T^{2} + 472 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 428 T + 662834 T^{2} + 428 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 900 T + 899670 T^{2} + 900 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 432 T + 924318 T^{2} + 432 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 1388 T + 1567866 T^{2} - 1388 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 960 T + 1134938 T^{2} + 960 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 532 T + 1218502 T^{2} + 532 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.63377013402291728405151092866, −11.93035959339855951985913242629, −11.63886287583979460261011077800, −11.42552329360681036081902905990, −10.95812536459132635329218249832, −10.08319105319050334074844463645, −9.294077543147806545208936945520, −9.108916971155018778334359686492, −8.433134935920717875958997297661, −8.063073205285482351626722771698, −7.21056578691358615986836758512, −6.97106369438775344828064583840, −6.32570344893574209253582398687, −5.17572821030091735397467274800, −4.30386547431927186983213540636, −3.95082809222005994297292905025, −3.13310505933253413178456107533, −1.82422593312439725647634377140, 0, 0, 1.82422593312439725647634377140, 3.13310505933253413178456107533, 3.95082809222005994297292905025, 4.30386547431927186983213540636, 5.17572821030091735397467274800, 6.32570344893574209253582398687, 6.97106369438775344828064583840, 7.21056578691358615986836758512, 8.063073205285482351626722771698, 8.433134935920717875958997297661, 9.108916971155018778334359686492, 9.294077543147806545208936945520, 10.08319105319050334074844463645, 10.95812536459132635329218249832, 11.42552329360681036081902905990, 11.63886287583979460261011077800, 11.93035959339855951985913242629, 12.63377013402291728405151092866

Graph of the $Z$-function along the critical line