L(s) = 1 | − 3·3-s − 2·4-s − 6·5-s − 6·7-s + 6·9-s + 6·11-s + 6·12-s − 5·13-s + 18·15-s − 6·17-s + 12·20-s + 18·21-s − 3·23-s + 19·25-s − 9·27-s + 12·28-s − 6·29-s + 6·31-s − 18·33-s + 36·35-s − 12·36-s + 15·39-s − 12·41-s + 43-s − 12·44-s − 36·45-s − 12·47-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 4-s − 2.68·5-s − 2.26·7-s + 2·9-s + 1.80·11-s + 1.73·12-s − 1.38·13-s + 4.64·15-s − 1.45·17-s + 2.68·20-s + 3.92·21-s − 0.625·23-s + 19/5·25-s − 1.73·27-s + 2.26·28-s − 1.11·29-s + 1.07·31-s − 3.13·33-s + 6.08·35-s − 2·36-s + 2.40·39-s − 1.87·41-s + 0.152·43-s − 1.80·44-s − 5.36·45-s − 1.75·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | $C_2$ | \( 1 + p T + p T^{2} \) |
| 13 | $C_2$ | \( 1 + 5 T + p T^{2} \) |
good | 2 | $C_2^2$ | \( 1 + p T^{2} + p^{2} T^{4} \) |
| 5 | $C_2^2$ | \( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 7 | $C_2$ | \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 23 | $C_2^2$ | \( 1 + 3 T - 14 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 29 | $C_2^2$ | \( 1 + 6 T + 7 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 31 | $C_2^2$ | \( 1 - 6 T + 43 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 37 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 + 12 T + 89 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 43 | $C_2^2$ | \( 1 - T - 42 T^{2} - p T^{3} + p^{2} T^{4} \) |
| 47 | $C_2^2$ | \( 1 + 12 T + 95 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 + 9 T + p T^{2} )^{2} \) |
| 59 | $C_2^2$ | \( 1 - 6 T + 71 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 + 7 T - 12 T^{2} + 7 p T^{3} + p^{2} T^{4} \) |
| 67 | $C_2^2$ | \( 1 + p T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 73 | $C_2^2$ | \( 1 - 38 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2^2$ | \( 1 + T - 78 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 - 12 T + 131 T^{2} - 12 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 - 166 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2^2$ | \( 1 - 12 T + 145 T^{2} - 12 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.90540293630586733890153355394, −12.64976601342064648747269327247, −12.12900601149315251790140746565, −11.75438835735683116415305978526, −11.48412798336320981215192535822, −10.94226950350821712296634159637, −10.00178610684291064617627635800, −9.681905834105698325070932089493, −9.144995044936558140044674438003, −8.477662955428252514888537980504, −7.63110419811954353490859704665, −6.99488438903327558810410830610, −6.54728851093017236777411448367, −6.28951309323056334665448752408, −4.76331302955890611710624149097, −4.64371638059730855232114849506, −3.80247328858458021016633500459, −3.47613086007436455330254655724, 0, 0,
3.47613086007436455330254655724, 3.80247328858458021016633500459, 4.64371638059730855232114849506, 4.76331302955890611710624149097, 6.28951309323056334665448752408, 6.54728851093017236777411448367, 6.99488438903327558810410830610, 7.63110419811954353490859704665, 8.477662955428252514888537980504, 9.144995044936558140044674438003, 9.681905834105698325070932089493, 10.00178610684291064617627635800, 10.94226950350821712296634159637, 11.48412798336320981215192535822, 11.75438835735683116415305978526, 12.12900601149315251790140746565, 12.64976601342064648747269327247, 12.90540293630586733890153355394