Properties

Label 4-117e2-1.1-c1e2-0-12
Degree $4$
Conductor $13689$
Sign $-1$
Analytic cond. $0.872822$
Root an. cond. $0.966565$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 3·5-s + 6-s + 7-s − 3·8-s + 9-s + 3·10-s + 2·11-s − 12-s − 3·13-s − 14-s + 3·15-s + 16-s + 17-s − 18-s − 19-s − 3·20-s − 21-s − 2·22-s − 2·23-s + 3·24-s − 25-s + 3·26-s − 27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.34·5-s + 0.408·6-s + 0.377·7-s − 1.06·8-s + 1/3·9-s + 0.948·10-s + 0.603·11-s − 0.288·12-s − 0.832·13-s − 0.267·14-s + 0.774·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.229·19-s − 0.670·20-s − 0.218·21-s − 0.426·22-s − 0.417·23-s + 0.612·24-s − 1/5·25-s + 0.588·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(13689\)    =    \(3^{4} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(0.872822\)
Root analytic conductor: \(0.966565\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 13689,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
13$C_2$ \( 1 + 3 T + p T^{2} \)
good2$D_{4}$ \( 1 + T + p T^{3} + p^{2} T^{4} \)
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$D_{4}$ \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - T + 18 T^{2} - p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + T - 12 T^{2} + p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 2 T + 30 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$D_{4}$ \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 2 T + 63 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$D_{4}$ \( 1 - 2 T + 30 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 2 T - 38 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 3 T + 42 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 8 T + 106 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 4 T + 9 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 5 T + 48 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
79$D_{4}$ \( 1 + 3 T + 58 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 2 T - 26 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 2 T - 134 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 11 T + 100 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.6516711244, −15.8971424743, −15.5173537797, −15.2308398193, −14.6265865477, −14.2959201887, −13.4464320133, −12.7400038690, −12.2560794724, −11.8332723488, −11.5343194337, −11.0731081624, −10.5316322649, −9.67611175598, −9.39468866803, −8.70070536068, −8.09051307741, −7.44430560246, −7.23063392018, −6.30518471434, −5.75138870735, −4.84002088096, −4.05853229878, −3.36539349364, −1.98846463525, 0, 1.98846463525, 3.36539349364, 4.05853229878, 4.84002088096, 5.75138870735, 6.30518471434, 7.23063392018, 7.44430560246, 8.09051307741, 8.70070536068, 9.39468866803, 9.67611175598, 10.5316322649, 11.0731081624, 11.5343194337, 11.8332723488, 12.2560794724, 12.7400038690, 13.4464320133, 14.2959201887, 14.6265865477, 15.2308398193, 15.5173537797, 15.8971424743, 16.6516711244

Graph of the $Z$-function along the critical line