Properties

Label 4-1152e2-1.1-c1e2-0-23
Degree $4$
Conductor $1327104$
Sign $1$
Analytic cond. $84.6173$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 4·13-s + 4·17-s + 2·25-s + 12·29-s + 20·37-s + 12·41-s + 2·49-s + 12·53-s + 4·61-s − 16·65-s + 28·73-s − 16·85-s + 4·89-s − 4·97-s + 12·101-s − 12·109-s − 4·113-s − 18·121-s + 28·125-s + 127-s + 131-s + 137-s + 139-s − 48·145-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1.78·5-s + 1.10·13-s + 0.970·17-s + 2/5·25-s + 2.22·29-s + 3.28·37-s + 1.87·41-s + 2/7·49-s + 1.64·53-s + 0.512·61-s − 1.98·65-s + 3.27·73-s − 1.73·85-s + 0.423·89-s − 0.406·97-s + 1.19·101-s − 1.14·109-s − 0.376·113-s − 1.63·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3.98·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1327104 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1327104 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1327104\)    =    \(2^{14} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(84.6173\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1327104,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.848264670\)
\(L(\frac12)\) \(\approx\) \(1.848264670\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.076512848121596140241215200165, −7.63242500478736670765641851926, −7.36082202049510326881285758548, −6.52256885432452015704757780960, −6.38329769807791755045956385135, −5.82368326970125389675476631831, −5.34050418818343429420051907291, −4.62995407509459210959268189869, −4.28451177805084716850337467950, −3.73824894896581631226090928700, −3.67212844043023358887177272155, −2.71947017805277709590872673137, −2.44235807183272353930685105042, −1.02724387350145696940295704376, −0.795101455562395073664105794433, 0.795101455562395073664105794433, 1.02724387350145696940295704376, 2.44235807183272353930685105042, 2.71947017805277709590872673137, 3.67212844043023358887177272155, 3.73824894896581631226090928700, 4.28451177805084716850337467950, 4.62995407509459210959268189869, 5.34050418818343429420051907291, 5.82368326970125389675476631831, 6.38329769807791755045956385135, 6.52256885432452015704757780960, 7.36082202049510326881285758548, 7.63242500478736670765641851926, 8.076512848121596140241215200165

Graph of the $Z$-function along the critical line