Properties

Label 4-114e2-1.1-c1e2-0-0
Degree $4$
Conductor $12996$
Sign $1$
Analytic cond. $0.828636$
Root an. cond. $0.954093$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 3·4-s + 4·6-s − 8·7-s − 4·8-s + 9-s − 6·12-s + 16·14-s + 5·16-s − 2·18-s + 2·19-s + 16·21-s + 8·24-s + 8·25-s + 4·27-s − 24·28-s + 12·29-s − 6·32-s + 3·36-s − 4·38-s − 32·42-s + 4·43-s − 10·48-s + 34·49-s − 16·50-s − 12·53-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 3/2·4-s + 1.63·6-s − 3.02·7-s − 1.41·8-s + 1/3·9-s − 1.73·12-s + 4.27·14-s + 5/4·16-s − 0.471·18-s + 0.458·19-s + 3.49·21-s + 1.63·24-s + 8/5·25-s + 0.769·27-s − 4.53·28-s + 2.22·29-s − 1.06·32-s + 1/2·36-s − 0.648·38-s − 4.93·42-s + 0.609·43-s − 1.44·48-s + 34/7·49-s − 2.26·50-s − 1.64·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12996 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12996 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12996\)    =    \(2^{2} \cdot 3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.828636\)
Root analytic conductor: \(0.954093\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12996,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2090591793\)
\(L(\frac12)\) \(\approx\) \(0.2090591793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
19$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 56 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 92 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 140 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.17461496914506874884294786783, −12.86554969930770695368190381367, −12.59996735577287581826995145004, −12.39727882625190788016740595340, −11.72666334402644106659205396212, −11.01841174469738338022426905919, −10.56265684308273267318571520182, −10.13004918113045919660344999085, −9.687257480288723321972873330012, −9.206044813673965073257274287356, −8.732450706857503879431768376690, −7.88739778826632931859306112493, −6.99016355562247833280236354883, −6.56900575356071618745082935569, −6.36644239338775995376605019153, −5.72842745695832435114139827872, −4.67072515898436690904446070940, −3.13805947770897882212007565114, −2.97323078393205506761813742798, −0.66816671282063161139195356884, 0.66816671282063161139195356884, 2.97323078393205506761813742798, 3.13805947770897882212007565114, 4.67072515898436690904446070940, 5.72842745695832435114139827872, 6.36644239338775995376605019153, 6.56900575356071618745082935569, 6.99016355562247833280236354883, 7.88739778826632931859306112493, 8.732450706857503879431768376690, 9.206044813673965073257274287356, 9.687257480288723321972873330012, 10.13004918113045919660344999085, 10.56265684308273267318571520182, 11.01841174469738338022426905919, 11.72666334402644106659205396212, 12.39727882625190788016740595340, 12.59996735577287581826995145004, 12.86554969930770695368190381367, 14.17461496914506874884294786783

Graph of the $Z$-function along the critical line