Properties

 Label 4-1148e2-1.1-c1e2-0-11 Degree $4$ Conductor $1317904$ Sign $1$ Analytic cond. $84.0307$ Root an. cond. $3.02767$ Motivic weight $1$ Arithmetic yes Rational yes Primitive yes Self-dual yes Analytic rank $2$

Learn more

Dirichlet series

 L(s)  = 1 − 2·4-s − 3·7-s − 2·9-s − 3·11-s + 4·16-s − 8·25-s + 6·28-s − 12·29-s + 4·36-s + 2·37-s + 3·43-s + 6·44-s + 2·49-s − 7·53-s + 6·63-s − 8·64-s + 3·67-s − 24·71-s + 9·77-s + 27·79-s − 5·81-s + 6·99-s + 16·100-s − 24·107-s − 24·109-s − 12·112-s − 36·113-s + ⋯
 L(s)  = 1 − 4-s − 1.13·7-s − 2/3·9-s − 0.904·11-s + 16-s − 8/5·25-s + 1.13·28-s − 2.22·29-s + 2/3·36-s + 0.328·37-s + 0.457·43-s + 0.904·44-s + 2/7·49-s − 0.961·53-s + 0.755·63-s − 64-s + 0.366·67-s − 2.84·71-s + 1.02·77-s + 3.03·79-s − 5/9·81-s + 0.603·99-s + 8/5·100-s − 2.32·107-s − 2.29·109-s − 1.13·112-s − 3.38·113-s + ⋯

Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1317904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1317904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

 Degree: $$4$$ Conductor: $$1317904$$    =    $$2^{4} \cdot 7^{2} \cdot 41^{2}$$ Sign: $1$ Analytic conductor: $$84.0307$$ Root analytic conductor: $$3.02767$$ Motivic weight: $$1$$ Rational: yes Arithmetic: yes Character: $\chi_{1317904} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$2$$ Selberg data: $$(4,\ 1317904,\ (\ :1/2, 1/2),\ 1)$$

Particular Values

 $$L(1)$$ $$=$$ $$0$$ $$L(\frac12)$$ $$=$$ $$0$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ $$1 + p T^{2}$$
7$C_2$ $$1 + 3 T + p T^{2}$$
41$C_2$ $$1 + T^{2}$$
good3$C_2$ $$( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )$$
5$C_2^2$ $$1 + 8 T^{2} + p^{2} T^{4}$$
11$C_2$$\times$$C_2$ $$( 1 - 2 T + p T^{2} )( 1 + 5 T + p T^{2} )$$
13$C_2^2$ $$1 + 8 T^{2} + p^{2} T^{4}$$
17$C_2$ $$( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} )$$
19$C_2$ $$( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )$$
23$C_2$ $$( 1 - T + p T^{2} )( 1 + T + p T^{2} )$$
29$C_2$ $$( 1 + 6 T + p T^{2} )^{2}$$
31$C_2^2$ $$1 - 29 T^{2} + p^{2} T^{4}$$
37$C_2$$\times$$C_2$ $$( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} )$$
43$C_2$$\times$$C_2$ $$( 1 - 3 T + p T^{2} )( 1 + p T^{2} )$$
47$C_2^2$ $$1 - 9 T^{2} + p^{2} T^{4}$$
53$C_2$$\times$$C_2$ $$( 1 + 2 T + p T^{2} )( 1 + 5 T + p T^{2} )$$
59$C_2^2$ $$1 - 80 T^{2} + p^{2} T^{4}$$
61$C_2^2$ $$1 - 32 T^{2} + p^{2} T^{4}$$
67$C_2$$\times$$C_2$ $$( 1 - 4 T + p T^{2} )( 1 + T + p T^{2} )$$
71$C_2$$\times$$C_2$ $$( 1 + 8 T + p T^{2} )( 1 + 16 T + p T^{2} )$$
73$C_2^2$ $$1 + 125 T^{2} + p^{2} T^{4}$$
79$C_2$$\times$$C_2$ $$( 1 - 15 T + p T^{2} )( 1 - 12 T + p T^{2} )$$
83$C_2^2$ $$1 - 18 T^{2} + p^{2} T^{4}$$
89$C_2$ $$( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} )$$
97$C_2^2$ $$1 + 65 T^{2} + p^{2} T^{4}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

Imaginary part of the first few zeros on the critical line

−7.81984255136903205261579808521, −7.14867232559295101187766231845, −6.64447309479564266365116059662, −6.05677072582506833294348520457, −5.71837803290602095684702552837, −5.44463946581307225410414319337, −4.95635577557968888449209561031, −4.20987702177701571378651861534, −3.87790605820721841521259398882, −3.40322535550169985950590696955, −2.85785765538364129691072107754, −2.28984803304305741296664810867, −1.41170618977347961541338413914, 0, 0, 1.41170618977347961541338413914, 2.28984803304305741296664810867, 2.85785765538364129691072107754, 3.40322535550169985950590696955, 3.87790605820721841521259398882, 4.20987702177701571378651861534, 4.95635577557968888449209561031, 5.44463946581307225410414319337, 5.71837803290602095684702552837, 6.05677072582506833294348520457, 6.64447309479564266365116059662, 7.14867232559295101187766231845, 7.81984255136903205261579808521