Properties

Label 4-1134e2-1.1-c1e2-0-48
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 3·5-s + 2·7-s − 4·8-s − 6·10-s + 3·11-s + 4·13-s − 4·14-s + 5·16-s − 3·17-s + 10·19-s + 9·20-s − 6·22-s − 9·23-s + 5·25-s − 8·26-s + 6·28-s − 6·29-s + 4·31-s − 6·32-s + 6·34-s + 6·35-s + 4·37-s − 20·38-s − 12·40-s + 15·41-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s + 1.34·5-s + 0.755·7-s − 1.41·8-s − 1.89·10-s + 0.904·11-s + 1.10·13-s − 1.06·14-s + 5/4·16-s − 0.727·17-s + 2.29·19-s + 2.01·20-s − 1.27·22-s − 1.87·23-s + 25-s − 1.56·26-s + 1.13·28-s − 1.11·29-s + 0.718·31-s − 1.06·32-s + 1.02·34-s + 1.01·35-s + 0.657·37-s − 3.24·38-s − 1.89·40-s + 2.34·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.093137985\)
\(L(\frac12)\) \(\approx\) \(2.093137985\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7$C_1$ \( ( 1 - T )^{2} \)
good5$C_2^2$ \( 1 - 3 T + 4 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 3 T + 16 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$D_{4}$ \( 1 + 3 T + 28 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 9 T + 58 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 6 T + 34 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$D_{4}$ \( 1 - 15 T + 130 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - T + 12 T^{2} - p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$D_{4}$ \( 1 + 6 T + 82 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 3 T + 46 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 11 T + 78 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 13 T + 102 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 3 T + 70 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 7 T + 84 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 7 T + 96 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 12 T + 70 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 18 T + 226 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - T + 120 T^{2} - p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.611426880671117014573603530527, −9.553029099132009361883548736634, −9.374193050761032141502780033119, −9.052040037772952561483046744056, −8.277735268974693200492175365259, −8.155637111832045415082538407090, −7.55487777992610276284619447478, −7.42458180415379935621344317395, −6.56715271469849864491990788155, −6.36549820293758308041327942502, −5.83861194238455432709651689682, −5.72514461951518833019983702340, −4.98470719014140810015651110823, −4.38169554532108659490936761861, −3.69745885480400443806823455745, −3.24589792205901543785445276530, −2.23144714084569893290900727542, −2.13628201850153038060075765431, −1.28480170843469111711011416771, −0.938150861051641907853982587863, 0.938150861051641907853982587863, 1.28480170843469111711011416771, 2.13628201850153038060075765431, 2.23144714084569893290900727542, 3.24589792205901543785445276530, 3.69745885480400443806823455745, 4.38169554532108659490936761861, 4.98470719014140810015651110823, 5.72514461951518833019983702340, 5.83861194238455432709651689682, 6.36549820293758308041327942502, 6.56715271469849864491990788155, 7.42458180415379935621344317395, 7.55487777992610276284619447478, 8.155637111832045415082538407090, 8.277735268974693200492175365259, 9.052040037772952561483046744056, 9.374193050761032141502780033119, 9.553029099132009361883548736634, 9.611426880671117014573603530527

Graph of the $Z$-function along the critical line