Properties

Label 4-1134e2-1.1-c1e2-0-47
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·5-s + 5·7-s − 8-s − 3·10-s − 3·11-s + 10·13-s + 5·14-s − 16-s + 3·17-s − 5·19-s − 3·22-s − 3·23-s + 5·25-s + 10·26-s + 6·29-s + 4·31-s + 3·34-s − 15·35-s + 7·37-s − 5·38-s + 3·40-s + 18·41-s + 22·43-s − 3·46-s + 18·49-s + 5·50-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.34·5-s + 1.88·7-s − 0.353·8-s − 0.948·10-s − 0.904·11-s + 2.77·13-s + 1.33·14-s − 1/4·16-s + 0.727·17-s − 1.14·19-s − 0.639·22-s − 0.625·23-s + 25-s + 1.96·26-s + 1.11·29-s + 0.718·31-s + 0.514·34-s − 2.53·35-s + 1.15·37-s − 0.811·38-s + 0.474·40-s + 2.81·41-s + 3.35·43-s − 0.442·46-s + 18/7·49-s + 0.707·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.588272311\)
\(L(\frac12)\) \(\approx\) \(3.588272311\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
3 \( 1 \)
7$C_2$ \( 1 - 5 T + p T^{2} \)
good5$C_2^2$ \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 3 T - 2 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 3 T - 8 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 5 T + 6 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 3 T - 14 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 7 T + 12 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 3 T - 44 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 12 T + 85 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 4 T - 51 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 11 T + 48 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 8 T - 15 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 15 T + 136 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.34220122028087596798656835515, −9.522504121358386028611687476099, −8.891226833385801878122406863794, −8.722733110802035391253650484361, −8.167158492048686555481550602543, −8.101876096637942012191884497065, −7.56458326776227314569478269088, −7.48532144492719564883978653468, −6.40692489972887638870109508637, −6.22620596868304138213600402021, −5.64218873523986947280019276118, −5.42642939739238448349896038694, −4.59042064991422698850656927457, −4.18169729592797655969431318762, −4.15045448100220269358907368681, −3.69469586173892563049173973377, −2.61358185863628775441037354243, −2.55290428672454911294736394191, −1.21312791672291179919044185279, −0.931380735495143725136401995693, 0.931380735495143725136401995693, 1.21312791672291179919044185279, 2.55290428672454911294736394191, 2.61358185863628775441037354243, 3.69469586173892563049173973377, 4.15045448100220269358907368681, 4.18169729592797655969431318762, 4.59042064991422698850656927457, 5.42642939739238448349896038694, 5.64218873523986947280019276118, 6.22620596868304138213600402021, 6.40692489972887638870109508637, 7.48532144492719564883978653468, 7.56458326776227314569478269088, 8.101876096637942012191884497065, 8.167158492048686555481550602543, 8.722733110802035391253650484361, 8.891226833385801878122406863794, 9.522504121358386028611687476099, 10.34220122028087596798656835515

Graph of the $Z$-function along the critical line