Properties

Label 4-1134e2-1.1-c1e2-0-32
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 3·5-s + 5·7-s − 4·8-s − 6·10-s − 3·11-s − 2·13-s − 10·14-s + 5·16-s + 6·17-s − 2·19-s + 9·20-s + 6·22-s − 6·23-s + 5·25-s + 4·26-s + 15·28-s + 9·29-s − 14·31-s − 6·32-s − 12·34-s + 15·35-s + 10·37-s + 4·38-s − 12·40-s + 4·43-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s + 1.34·5-s + 1.88·7-s − 1.41·8-s − 1.89·10-s − 0.904·11-s − 0.554·13-s − 2.67·14-s + 5/4·16-s + 1.45·17-s − 0.458·19-s + 2.01·20-s + 1.27·22-s − 1.25·23-s + 25-s + 0.784·26-s + 2.83·28-s + 1.67·29-s − 2.51·31-s − 1.06·32-s − 2.05·34-s + 2.53·35-s + 1.64·37-s + 0.648·38-s − 1.89·40-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.690662146\)
\(L(\frac12)\) \(\approx\) \(1.690662146\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7$C_2$ \( 1 - 5 T + p T^{2} \)
good5$C_2^2$ \( 1 - 3 T + 4 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 3 T - 2 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 9 T + 52 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 4 T - 27 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 3 T - 44 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 2 T - 69 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 9 T - 2 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 6 T - 53 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 13 T + 72 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26980607198451944229242033133, −9.569685192289642502328349543342, −9.332961177908088222805515235009, −8.775262187367468271700633997296, −8.268844182903131002529243359122, −8.088168891708433689094398377918, −7.62184572398253721840102770906, −7.50517691809524325768051837531, −6.80973395041526012848909616557, −6.07009735323186838577893313892, −6.05326367348329007999016342382, −5.37767761339440120497449487034, −4.95863252746363072736864922124, −4.69349823285998869070588357282, −3.73695121283881014905113206878, −3.02531344070315714082326889820, −2.39150605009662662378889033192, −1.85763538174346659118100126300, −1.66039774469326545763691846884, −0.72350189192768568880147182121, 0.72350189192768568880147182121, 1.66039774469326545763691846884, 1.85763538174346659118100126300, 2.39150605009662662378889033192, 3.02531344070315714082326889820, 3.73695121283881014905113206878, 4.69349823285998869070588357282, 4.95863252746363072736864922124, 5.37767761339440120497449487034, 6.05326367348329007999016342382, 6.07009735323186838577893313892, 6.80973395041526012848909616557, 7.50517691809524325768051837531, 7.62184572398253721840102770906, 8.088168891708433689094398377918, 8.268844182903131002529243359122, 8.775262187367468271700633997296, 9.332961177908088222805515235009, 9.569685192289642502328349543342, 10.26980607198451944229242033133

Graph of the $Z$-function along the critical line