Properties

Label 4-1134e2-1.1-c1e2-0-29
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s − 3·5-s − 7-s + 4·8-s − 6·10-s + 4·13-s − 2·14-s + 5·16-s − 6·17-s + 4·19-s − 9·20-s − 6·23-s + 5·25-s + 8·26-s − 3·28-s + 3·29-s + 16·31-s + 6·32-s − 12·34-s + 3·35-s − 8·37-s + 8·38-s − 12·40-s + 6·41-s − 8·43-s − 12·46-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s − 1.34·5-s − 0.377·7-s + 1.41·8-s − 1.89·10-s + 1.10·13-s − 0.534·14-s + 5/4·16-s − 1.45·17-s + 0.917·19-s − 2.01·20-s − 1.25·23-s + 25-s + 1.56·26-s − 0.566·28-s + 0.557·29-s + 2.87·31-s + 1.06·32-s − 2.05·34-s + 0.507·35-s − 1.31·37-s + 1.29·38-s − 1.89·40-s + 0.937·41-s − 1.21·43-s − 1.76·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.743257487\)
\(L(\frac12)\) \(\approx\) \(3.743257487\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3 \( 1 \)
7$C_2$ \( 1 + T + p T^{2} \)
good5$C_2^2$ \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 4 T + 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 4 T - 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 3 T - 20 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 8 T + 27 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 9 T + 28 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 17 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 12 T + 61 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 6 T - 53 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 10 T + 3 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.38886397933334988193916629202, −9.475663151672731156418072590876, −9.323973478791458326878873567121, −8.623408731786003754530177064383, −8.184663599171142558076462388587, −7.959001138170310168447772434151, −7.50967069718777235638547235447, −6.99933598987310551273753361842, −6.45375723586784867457889984428, −6.15101073263977076467663350953, −6.08746777451634720510656709676, −5.03705731211878736077582173957, −4.69758357275940886803603557316, −4.47542373088997820439236477953, −3.87182470730173416153711415545, −3.38537071491918194082525401274, −3.14216588243346435465642155812, −2.42667620499939067781944617911, −1.67467004161053159171230270879, −0.67872419458169656971759809767, 0.67872419458169656971759809767, 1.67467004161053159171230270879, 2.42667620499939067781944617911, 3.14216588243346435465642155812, 3.38537071491918194082525401274, 3.87182470730173416153711415545, 4.47542373088997820439236477953, 4.69758357275940886803603557316, 5.03705731211878736077582173957, 6.08746777451634720510656709676, 6.15101073263977076467663350953, 6.45375723586784867457889984428, 6.99933598987310551273753361842, 7.50967069718777235638547235447, 7.959001138170310168447772434151, 8.184663599171142558076462388587, 8.623408731786003754530177064383, 9.323973478791458326878873567121, 9.475663151672731156418072590876, 10.38886397933334988193916629202

Graph of the $Z$-function along the critical line