Properties

Label 4-1134e2-1.1-c1e2-0-19
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 7-s − 8-s − 8·13-s − 14-s − 16-s + 6·17-s − 2·19-s − 3·23-s + 5·25-s − 8·26-s + 12·29-s − 5·31-s + 6·34-s − 8·37-s − 2·38-s − 6·41-s + 4·43-s − 3·46-s − 3·47-s − 6·49-s + 5·50-s + 6·53-s + 56-s + 12·58-s + 12·59-s − 8·61-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.377·7-s − 0.353·8-s − 2.21·13-s − 0.267·14-s − 1/4·16-s + 1.45·17-s − 0.458·19-s − 0.625·23-s + 25-s − 1.56·26-s + 2.22·29-s − 0.898·31-s + 1.02·34-s − 1.31·37-s − 0.324·38-s − 0.937·41-s + 0.609·43-s − 0.442·46-s − 0.437·47-s − 6/7·49-s + 0.707·50-s + 0.824·53-s + 0.133·56-s + 1.57·58-s + 1.56·59-s − 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.807423923\)
\(L(\frac12)\) \(\approx\) \(1.807423923\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
3 \( 1 \)
7$C_2$ \( 1 + T + p T^{2} \)
good5$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 3 T - 14 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 5 T - 6 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 8 T + 27 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 3 T - 38 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 6 T - 17 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 12 T + 85 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 8 T + 3 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 8 T - 3 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 11 T + 48 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - T - 78 T^{2} - p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 9 T - 8 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04032477864609268002565982447, −9.777515952474817901011434466223, −9.259877942501114268986310057630, −8.751326962335617125382252720620, −8.441946122149274835595135755070, −7.85635032229335404262425532342, −7.53145193190046028968492573059, −7.04761532862353707053308365296, −6.61847246084874769216130802483, −6.33389770815637281932093375757, −5.59831003165260407108373654232, −5.24531903110421178446444202967, −4.77164736425325512826385696324, −4.68535146355940493986559974537, −3.60953452347460093291097102409, −3.60713659143739222842826218370, −2.67843845010194044938166841293, −2.52521539617684817323654621671, −1.58962942518729663991156481580, −0.52050792294987665071416059564, 0.52050792294987665071416059564, 1.58962942518729663991156481580, 2.52521539617684817323654621671, 2.67843845010194044938166841293, 3.60713659143739222842826218370, 3.60953452347460093291097102409, 4.68535146355940493986559974537, 4.77164736425325512826385696324, 5.24531903110421178446444202967, 5.59831003165260407108373654232, 6.33389770815637281932093375757, 6.61847246084874769216130802483, 7.04761532862353707053308365296, 7.53145193190046028968492573059, 7.85635032229335404262425532342, 8.441946122149274835595135755070, 8.751326962335617125382252720620, 9.259877942501114268986310057630, 9.777515952474817901011434466223, 10.04032477864609268002565982447

Graph of the $Z$-function along the critical line