Properties

Label 4-1134e2-1.1-c1e2-0-15
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 4·5-s − 5·7-s − 4·8-s − 8·10-s + 2·11-s − 6·13-s + 10·14-s + 5·16-s + 2·17-s + 4·19-s + 12·20-s − 4·22-s − 23-s + 5·25-s + 12·26-s − 15·28-s + 4·29-s − 18·31-s − 6·32-s − 4·34-s − 20·35-s − 8·37-s − 8·38-s − 16·40-s + 3·41-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s + 1.78·5-s − 1.88·7-s − 1.41·8-s − 2.52·10-s + 0.603·11-s − 1.66·13-s + 2.67·14-s + 5/4·16-s + 0.485·17-s + 0.917·19-s + 2.68·20-s − 0.852·22-s − 0.208·23-s + 25-s + 2.35·26-s − 2.83·28-s + 0.742·29-s − 3.23·31-s − 1.06·32-s − 0.685·34-s − 3.38·35-s − 1.31·37-s − 1.29·38-s − 2.52·40-s + 0.468·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6636507068\)
\(L(\frac12)\) \(\approx\) \(0.6636507068\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7$C_2$ \( 1 + 5 T + p T^{2} \)
good5$C_2^2$ \( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 2 T - 13 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 4 T - 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + T - 22 T^{2} + p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 4 T - 13 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 8 T + 27 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 3 T - 32 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 2 T - 39 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 12 T + 91 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 14 T + 113 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 3 T - 80 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 10 T + 3 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09832193012939156029554991694, −9.512071200893393874310744404821, −9.352579939097450797621193429109, −8.919514443411919726073946605765, −8.919131551083318279840014129883, −7.84717689841616808754033586633, −7.42512854841746209680356384795, −7.22700567641195771352218044920, −6.78069913421670163184563675894, −6.36669513582243966388359006582, −5.86842606570837005200177743516, −5.48843525812126798449580445608, −5.36273239143794969526082966632, −4.27026930899992951753523723270, −3.62562183683325818788594680186, −2.91366157400800324719189310408, −2.77732063273569094578870802149, −1.88557386160367316324485437620, −1.61799698151306428413647275313, −0.42921544936964084669831979732, 0.42921544936964084669831979732, 1.61799698151306428413647275313, 1.88557386160367316324485437620, 2.77732063273569094578870802149, 2.91366157400800324719189310408, 3.62562183683325818788594680186, 4.27026930899992951753523723270, 5.36273239143794969526082966632, 5.48843525812126798449580445608, 5.86842606570837005200177743516, 6.36669513582243966388359006582, 6.78069913421670163184563675894, 7.22700567641195771352218044920, 7.42512854841746209680356384795, 7.84717689841616808754033586633, 8.919131551083318279840014129883, 8.919514443411919726073946605765, 9.352579939097450797621193429109, 9.512071200893393874310744404821, 10.09832193012939156029554991694

Graph of the $Z$-function along the critical line