Properties

Label 4-1134e2-1.1-c1e2-0-10
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 8·5-s + 4·7-s − 8-s − 8·10-s − 4·11-s − 6·13-s + 4·14-s − 16-s + 2·17-s + 4·19-s − 4·22-s + 2·23-s + 38·25-s − 6·26-s + 4·29-s + 9·31-s + 2·34-s − 32·35-s − 8·37-s + 4·38-s + 8·40-s + 3·41-s − 2·43-s + 2·46-s − 9·47-s + 9·49-s + ⋯
L(s)  = 1  + 0.707·2-s − 3.57·5-s + 1.51·7-s − 0.353·8-s − 2.52·10-s − 1.20·11-s − 1.66·13-s + 1.06·14-s − 1/4·16-s + 0.485·17-s + 0.917·19-s − 0.852·22-s + 0.417·23-s + 38/5·25-s − 1.17·26-s + 0.742·29-s + 1.61·31-s + 0.342·34-s − 5.40·35-s − 1.31·37-s + 0.648·38-s + 1.26·40-s + 0.468·41-s − 0.304·43-s + 0.294·46-s − 1.31·47-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6636507068\)
\(L(\frac12)\) \(\approx\) \(0.6636507068\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
3 \( 1 \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 2 T - 13 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 4 T - 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 4 T - 13 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 9 T + 50 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 8 T + 27 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 3 T - 32 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 2 T - 39 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 9 T + 34 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 12 T + 91 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 4 T - 43 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 6 T - 25 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 14 T + 129 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 3 T - 70 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 14 T + 113 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 3 T - 80 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 10 T + 3 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20722375489288034585671516326, −9.608894106938001844731421185868, −9.070489920542411952601940459959, −8.251280628711767495856438442276, −8.221340299743421962187666103657, −8.102292066655922722400049252631, −7.50683348517793178960040618664, −7.42797481770432500044546182042, −6.90838370749308142028053775992, −6.40946812000155733098434213947, −5.21160667594789698229733972020, −5.07199259717945479110504043875, −4.83974780873966063684757016842, −4.52187505609357207725031138406, −3.88091180435206513628033822569, −3.55549158929830003379818731648, −2.83260179312313513232665017106, −2.69922148360612209446815807452, −1.26199554576020888487092176013, −0.35421968956502383157987901435, 0.35421968956502383157987901435, 1.26199554576020888487092176013, 2.69922148360612209446815807452, 2.83260179312313513232665017106, 3.55549158929830003379818731648, 3.88091180435206513628033822569, 4.52187505609357207725031138406, 4.83974780873966063684757016842, 5.07199259717945479110504043875, 5.21160667594789698229733972020, 6.40946812000155733098434213947, 6.90838370749308142028053775992, 7.42797481770432500044546182042, 7.50683348517793178960040618664, 8.102292066655922722400049252631, 8.221340299743421962187666103657, 8.251280628711767495856438442276, 9.070489920542411952601940459959, 9.608894106938001844731421185868, 10.20722375489288034585671516326

Graph of the $Z$-function along the critical line