Properties

Label 4-112e3-1.1-c1e2-0-23
Degree $4$
Conductor $1404928$
Sign $-1$
Analytic cond. $89.5794$
Root an. cond. $3.07646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 4·9-s + 2·11-s + 10·23-s + 2·25-s − 16·29-s + 4·37-s + 10·43-s + 49-s − 10·53-s + 4·63-s − 2·77-s − 20·79-s + 7·81-s − 8·99-s + 4·107-s + 16·109-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 10·161-s + 163-s + ⋯
L(s)  = 1  − 0.377·7-s − 4/3·9-s + 0.603·11-s + 2.08·23-s + 2/5·25-s − 2.97·29-s + 0.657·37-s + 1.52·43-s + 1/7·49-s − 1.37·53-s + 0.503·63-s − 0.227·77-s − 2.25·79-s + 7/9·81-s − 0.804·99-s + 0.386·107-s + 1.53·109-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 0.788·161-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1404928\)    =    \(2^{12} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(89.5794\)
Root analytic conductor: \(3.07646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1404928,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 + T \)
good3$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 116 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 102 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63730866217015373707714422514, −7.30938610443441778756699473080, −6.92786456894508405007857583570, −6.36249529789059442871028676114, −5.92419077433525637228473259977, −5.60186678453625226372964075247, −5.18685509698218462461608229094, −4.59760253603988668246969274775, −4.03608431046928950244930672346, −3.49808653690208959590256103111, −3.02489626653297184699187880187, −2.61942115191895265346521724222, −1.83244092276388395722828423858, −1.02146009644930970224782609679, 0, 1.02146009644930970224782609679, 1.83244092276388395722828423858, 2.61942115191895265346521724222, 3.02489626653297184699187880187, 3.49808653690208959590256103111, 4.03608431046928950244930672346, 4.59760253603988668246969274775, 5.18685509698218462461608229094, 5.60186678453625226372964075247, 5.92419077433525637228473259977, 6.36249529789059442871028676114, 6.92786456894508405007857583570, 7.30938610443441778756699473080, 7.63730866217015373707714422514

Graph of the $Z$-function along the critical line