Properties

Label 4-112e3-1.1-c1e2-0-17
Degree $4$
Conductor $1404928$
Sign $-1$
Analytic cond. $89.5794$
Root an. cond. $3.07646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 4·9-s − 2·11-s + 6·23-s + 2·25-s − 6·29-s + 2·37-s + 6·43-s + 49-s + 8·53-s + 4·63-s − 12·67-s − 12·71-s + 2·77-s + 7·81-s + 8·99-s + 12·107-s + 2·109-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 6·161-s + ⋯
L(s)  = 1  − 0.377·7-s − 4/3·9-s − 0.603·11-s + 1.25·23-s + 2/5·25-s − 1.11·29-s + 0.328·37-s + 0.914·43-s + 1/7·49-s + 1.09·53-s + 0.503·63-s − 1.46·67-s − 1.42·71-s + 0.227·77-s + 7/9·81-s + 0.804·99-s + 1.16·107-s + 0.191·109-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 0.472·161-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1404928\)    =    \(2^{12} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(89.5794\)
Root analytic conductor: \(3.07646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1404928,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 + T \)
good3$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 28 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75222761010965240609476780265, −7.33171883339341772994779710092, −6.89009920778461053670689200555, −6.39988256335822680138730366270, −5.87962956974246304838943353175, −5.52745844147401835353288767809, −5.26577017746525057508095490793, −4.56766962697825713558786982931, −4.14401623156428438521805723751, −3.40797472777902592444016143311, −2.97791501497783302352770740114, −2.63975336852309235676702520365, −1.93019087833099441846701632153, −0.938184998588665453621265998161, 0, 0.938184998588665453621265998161, 1.93019087833099441846701632153, 2.63975336852309235676702520365, 2.97791501497783302352770740114, 3.40797472777902592444016143311, 4.14401623156428438521805723751, 4.56766962697825713558786982931, 5.26577017746525057508095490793, 5.52745844147401835353288767809, 5.87962956974246304838943353175, 6.39988256335822680138730366270, 6.89009920778461053670689200555, 7.33171883339341772994779710092, 7.75222761010965240609476780265

Graph of the $Z$-function along the critical line