Properties

Label 4-112e2-1.1-c3e2-0-1
Degree $4$
Conductor $12544$
Sign $1$
Analytic cond. $43.6684$
Root an. cond. $2.57064$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·3-s + 9·5-s + 28·7-s + 27·9-s − 57·11-s − 140·13-s − 45·15-s − 51·17-s + 5·19-s − 140·21-s + 69·23-s + 125·25-s − 280·27-s + 228·29-s + 23·31-s + 285·33-s + 252·35-s + 253·37-s + 700·39-s − 84·41-s + 248·43-s + 243·45-s + 201·47-s + 441·49-s + 255·51-s + 393·53-s − 513·55-s + ⋯
L(s)  = 1  − 0.962·3-s + 0.804·5-s + 1.51·7-s + 9-s − 1.56·11-s − 2.98·13-s − 0.774·15-s − 0.727·17-s + 0.0603·19-s − 1.45·21-s + 0.625·23-s + 25-s − 1.99·27-s + 1.45·29-s + 0.133·31-s + 1.50·33-s + 1.21·35-s + 1.12·37-s + 2.87·39-s − 0.319·41-s + 0.879·43-s + 0.804·45-s + 0.623·47-s + 9/7·49-s + 0.700·51-s + 1.01·53-s − 1.25·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12544\)    =    \(2^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(43.6684\)
Root analytic conductor: \(2.57064\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12544,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.456884237\)
\(L(\frac12)\) \(\approx\) \(1.456884237\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( 1 - 4 p T + p^{3} T^{2} \)
good3$C_2^2$ \( 1 + 5 T - 2 T^{2} + 5 p^{3} T^{3} + p^{6} T^{4} \)
5$C_2^2$ \( 1 - 9 T - 44 T^{2} - 9 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 57 T + 1918 T^{2} + 57 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 70 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 3 p T - 8 p^{2} T^{2} + 3 p^{4} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 5 T - 6834 T^{2} - 5 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 3 p T - 14 p^{2} T^{2} - 3 p^{4} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 114 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 23 T - 29262 T^{2} - 23 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 253 T + 13356 T^{2} - 253 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 42 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 124 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 201 T - 63422 T^{2} - 201 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 393 T + 5572 T^{2} - 393 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 - 219 T - 157418 T^{2} - 219 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 709 T + 275700 T^{2} - 709 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 419 T - 125202 T^{2} - 419 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 96 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 313 T - 291048 T^{2} - 313 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 - 461 T - 280518 T^{2} - 461 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 - 588 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 1017 T + 329320 T^{2} - 1017 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 + 1834 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.60782332685305149632238179424, −12.66837681099206710461923172594, −12.38589878609169320169845936982, −11.94157378300821387265262199356, −11.12617753905737023704994500914, −10.92312515150809899999584688326, −10.24787097418557539767231598488, −9.822062218638266939600391947917, −9.408072128830228046476294858753, −8.371835607442038289036460901721, −7.86698863812020588520640571484, −7.20352261558888564560603235313, −6.92071386332276326703817062407, −5.78360694535227747061701620313, −5.16332039021654588844110979129, −4.93853429110145066101634325214, −4.40566887810134080486787917437, −2.43984266907745830284815425869, −2.27991706446225172238720019559, −0.68833255702630976640643116535, 0.68833255702630976640643116535, 2.27991706446225172238720019559, 2.43984266907745830284815425869, 4.40566887810134080486787917437, 4.93853429110145066101634325214, 5.16332039021654588844110979129, 5.78360694535227747061701620313, 6.92071386332276326703817062407, 7.20352261558888564560603235313, 7.86698863812020588520640571484, 8.371835607442038289036460901721, 9.408072128830228046476294858753, 9.822062218638266939600391947917, 10.24787097418557539767231598488, 10.92312515150809899999584688326, 11.12617753905737023704994500914, 11.94157378300821387265262199356, 12.38589878609169320169845936982, 12.66837681099206710461923172594, 13.60782332685305149632238179424

Graph of the $Z$-function along the critical line