L(s) = 1 | − 4·3-s + 8·9-s − 2·17-s − 4·19-s − 8·25-s − 12·27-s − 10·41-s − 7·49-s + 8·51-s + 16·57-s − 20·59-s − 10·73-s + 32·75-s + 23·81-s + 20·83-s + 10·89-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 6·121-s + 40·123-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 8/3·9-s − 0.485·17-s − 0.917·19-s − 8/5·25-s − 2.30·27-s − 1.56·41-s − 49-s + 1.12·51-s + 2.11·57-s − 2.60·59-s − 1.17·73-s + 3.69·75-s + 23/9·81-s + 2.19·83-s + 1.05·89-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 6/11·121-s + 3.60·123-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 7 | $C_2$ | \( 1 + p T^{2} \) |
good | 3 | $C_2^2$ | \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 5 | $C_2^2$ | \( 1 + 8 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 + 8 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} \) |
| 43 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2^2$ | \( 1 + 62 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 59 | $C_2^2$ | \( 1 + 20 T + 200 T^{2} + 20 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 + 72 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2^2$ | \( 1 - 20 T + 200 T^{2} - 20 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 97 | $C_2^2$ | \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.5955433184, −16.3214439874, −15.6216355996, −15.3527979476, −14.8012884938, −13.9704630848, −13.4492092494, −12.9967776131, −12.3793030980, −11.8739578809, −11.6731452885, −11.0387220221, −10.6909788060, −10.1937658629, −9.56981203394, −8.89937800096, −8.03517600042, −7.45189328179, −6.58962985617, −6.22671093794, −5.79315800694, −4.98187403175, −4.55857978785, −3.56274167954, −1.87823786404, 0,
1.87823786404, 3.56274167954, 4.55857978785, 4.98187403175, 5.79315800694, 6.22671093794, 6.58962985617, 7.45189328179, 8.03517600042, 8.89937800096, 9.56981203394, 10.1937658629, 10.6909788060, 11.0387220221, 11.6731452885, 11.8739578809, 12.3793030980, 12.9967776131, 13.4492092494, 13.9704630848, 14.8012884938, 15.3527979476, 15.6216355996, 16.3214439874, 16.5955433184