| L(s) = 1 | − 3-s − 5-s − 4·7-s − 9-s − 3·11-s + 15-s − 17-s + 19-s + 4·21-s − 23-s − 7·25-s + 4·29-s − 5·31-s + 3·33-s + 4·35-s − 7·37-s + 4·43-s + 45-s − 3·47-s + 9·49-s + 51-s − 3·53-s + 3·55-s − 57-s + 7·59-s + 11·61-s + 4·63-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 0.447·5-s − 1.51·7-s − 1/3·9-s − 0.904·11-s + 0.258·15-s − 0.242·17-s + 0.229·19-s + 0.872·21-s − 0.208·23-s − 7/5·25-s + 0.742·29-s − 0.898·31-s + 0.522·33-s + 0.676·35-s − 1.15·37-s + 0.609·43-s + 0.149·45-s − 0.437·47-s + 9/7·49-s + 0.140·51-s − 0.412·53-s + 0.404·55-s − 0.132·57-s + 0.911·59-s + 1.40·61-s + 0.503·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.2803151136, −16.0477416511, −15.7883927068, −15.3571362640, −14.5935605841, −14.0913255100, −13.4043430965, −13.1627701348, −12.4886366805, −12.2181084167, −11.4544148965, −11.1863736592, −10.4277162864, −9.91341150047, −9.60312574383, −8.73019020106, −8.25319553746, −7.45686411419, −6.96523418741, −6.25137441270, −5.68286246531, −5.12903627169, −4.01021899369, −3.39555020361, −2.41325366860, 0,
2.41325366860, 3.39555020361, 4.01021899369, 5.12903627169, 5.68286246531, 6.25137441270, 6.96523418741, 7.45686411419, 8.25319553746, 8.73019020106, 9.60312574383, 9.91341150047, 10.4277162864, 11.1863736592, 11.4544148965, 12.2181084167, 12.4886366805, 13.1627701348, 13.4043430965, 14.0913255100, 14.5935605841, 15.3571362640, 15.7883927068, 16.0477416511, 16.2803151136