Properties

Label 4-112e2-1.1-c1e2-0-0
Degree $4$
Conductor $12544$
Sign $1$
Analytic cond. $0.799816$
Root an. cond. $0.945687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 4·7-s + 6·9-s − 4·19-s − 16·21-s − 2·25-s + 4·27-s + 12·29-s + 16·31-s − 4·37-s + 9·49-s + 12·53-s + 16·57-s − 12·59-s + 24·63-s + 8·75-s − 37·81-s + 12·83-s − 48·87-s − 64·93-s − 8·103-s + 28·109-s + 16·111-s − 36·113-s + 10·121-s + 127-s + 131-s + ⋯
L(s)  = 1  − 2.30·3-s + 1.51·7-s + 2·9-s − 0.917·19-s − 3.49·21-s − 2/5·25-s + 0.769·27-s + 2.22·29-s + 2.87·31-s − 0.657·37-s + 9/7·49-s + 1.64·53-s + 2.11·57-s − 1.56·59-s + 3.02·63-s + 0.923·75-s − 4.11·81-s + 1.31·83-s − 5.14·87-s − 6.63·93-s − 0.788·103-s + 2.68·109-s + 1.51·111-s − 3.38·113-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12544\)    =    \(2^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.799816\)
Root analytic conductor: \(0.945687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12544,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5429041278\)
\(L(\frac12)\) \(\approx\) \(0.5429041278\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 146 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.05149851150536601912731627835, −13.34745702644632746708570537502, −12.43629648787716540674983378319, −12.08541445430052409448284292638, −11.71600842780928516730164992035, −11.53608786648513702801776631862, −10.71746733338320226481159020141, −10.48361246250146110961431272083, −10.16572090900810806046058816110, −8.989465811714025912703719229052, −8.275593580169004230850885191372, −8.088033745491439757133644511878, −6.95137221767744892846555518300, −6.40412089618040462057025792788, −6.03477501177299682547156576526, −5.21407291662131394303443555357, −4.77705997943313852717858901537, −4.35574014289993715868955404535, −2.64170589847875004777786885404, −1.03873125222266531521343601974, 1.03873125222266531521343601974, 2.64170589847875004777786885404, 4.35574014289993715868955404535, 4.77705997943313852717858901537, 5.21407291662131394303443555357, 6.03477501177299682547156576526, 6.40412089618040462057025792788, 6.95137221767744892846555518300, 8.088033745491439757133644511878, 8.275593580169004230850885191372, 8.989465811714025912703719229052, 10.16572090900810806046058816110, 10.48361246250146110961431272083, 10.71746733338320226481159020141, 11.53608786648513702801776631862, 11.71600842780928516730164992035, 12.08541445430052409448284292638, 12.43629648787716540674983378319, 13.34745702644632746708570537502, 14.05149851150536601912731627835

Graph of the $Z$-function along the critical line