Properties

Label 4-1110e2-1.1-c1e2-0-5
Degree $4$
Conductor $1232100$
Sign $1$
Analytic cond. $78.5597$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4-s − 2·7-s + 3·9-s − 2·11-s + 2·12-s + 16-s + 4·21-s − 25-s − 4·27-s + 2·28-s + 4·33-s − 3·36-s + 12·37-s − 4·41-s + 2·44-s + 24·47-s − 2·48-s − 11·49-s + 22·53-s − 6·63-s − 64-s + 24·67-s + 12·71-s − 2·73-s + 2·75-s + 4·77-s + ⋯
L(s)  = 1  − 1.15·3-s − 1/2·4-s − 0.755·7-s + 9-s − 0.603·11-s + 0.577·12-s + 1/4·16-s + 0.872·21-s − 1/5·25-s − 0.769·27-s + 0.377·28-s + 0.696·33-s − 1/2·36-s + 1.97·37-s − 0.624·41-s + 0.301·44-s + 3.50·47-s − 0.288·48-s − 1.57·49-s + 3.02·53-s − 0.755·63-s − 1/8·64-s + 2.93·67-s + 1.42·71-s − 0.234·73-s + 0.230·75-s + 0.455·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1232100\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(78.5597\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1232100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8573701856\)
\(L(\frac12)\) \(\approx\) \(0.8573701856\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_2$ \( 1 + T^{2} \)
37$C_2$ \( 1 - 12 T + p T^{2} \)
good7$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02592590252124287993361174379, −9.757674592322395651360084876713, −9.262152701564750930883455918575, −9.023074740307522681850076441493, −8.303894586725900257113948758249, −8.020486131892934550098755552225, −7.52301015595131319283184415607, −6.99416720499669562100549753595, −6.72400727434630523911025153399, −6.19429555039558421062594892004, −5.66328319385818833104268411075, −5.51968528325553463368885747218, −4.96389623615838547188196016628, −4.46116264552764782255529051814, −3.78866922353619549736702948144, −3.73114384413749356116416006896, −2.56023766661685018531833096121, −2.38677319813039334606711147299, −1.11520569429418792601494087728, −0.52536425682019317544191150121, 0.52536425682019317544191150121, 1.11520569429418792601494087728, 2.38677319813039334606711147299, 2.56023766661685018531833096121, 3.73114384413749356116416006896, 3.78866922353619549736702948144, 4.46116264552764782255529051814, 4.96389623615838547188196016628, 5.51968528325553463368885747218, 5.66328319385818833104268411075, 6.19429555039558421062594892004, 6.72400727434630523911025153399, 6.99416720499669562100549753595, 7.52301015595131319283184415607, 8.020486131892934550098755552225, 8.303894586725900257113948758249, 9.023074740307522681850076441493, 9.262152701564750930883455918575, 9.757674592322395651360084876713, 10.02592590252124287993361174379

Graph of the $Z$-function along the critical line