L(s) = 1 | − 2·3-s + 4-s − 4·7-s + 9-s − 2·12-s + 6·13-s + 16-s + 4·19-s + 8·21-s − 25-s + 4·27-s − 4·28-s + 8·31-s + 36-s − 12·39-s − 8·43-s − 2·48-s − 49-s + 6·52-s − 8·57-s − 8·61-s − 4·63-s + 64-s − 8·67-s − 10·73-s + 2·75-s + 4·76-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/2·4-s − 1.51·7-s + 1/3·9-s − 0.577·12-s + 1.66·13-s + 1/4·16-s + 0.917·19-s + 1.74·21-s − 1/5·25-s + 0.769·27-s − 0.755·28-s + 1.43·31-s + 1/6·36-s − 1.92·39-s − 1.21·43-s − 0.288·48-s − 1/7·49-s + 0.832·52-s − 1.05·57-s − 1.02·61-s − 0.503·63-s + 1/8·64-s − 0.977·67-s − 1.17·73-s + 0.230·75-s + 0.458·76-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
−1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 3 | C2 | 1+2T+pT2 |
| 5 | C2 | 1+T2 |
| 37 | C1×C1 | (1−T)(1+T) |
good | 7 | C2×C2 | (1+T+pT2)(1+3T+pT2) |
| 11 | C22 | 1−7T2+p2T4 |
| 13 | C2×C2 | (1−5T+pT2)(1−T+pT2) |
| 17 | C22 | 1−9T2+p2T4 |
| 19 | C2×C2 | (1−5T+pT2)(1+T+pT2) |
| 23 | C22 | 1+29T2+p2T4 |
| 29 | C22 | 1+2T2+p2T4 |
| 31 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 41 | C22 | 1+10T2+p2T4 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1−62T2+p2T4 |
| 53 | C22 | 1+51T2+p2T4 |
| 59 | C22 | 1+2T2+p2T4 |
| 61 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 73 | C2×C2 | (1−T+pT2)(1+11T+pT2) |
| 79 | C2×C2 | (1−12T+pT2)(1+14T+pT2) |
| 83 | C22 | 1−7T2+p2T4 |
| 89 | C22 | 1+15T2+p2T4 |
| 97 | C2×C2 | (1−6T+pT2)(1−4T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.74151171551449502330125125699, −7.16152902049794544132675437202, −6.70040122798654550620733112587, −6.40818821278537747508017147952, −6.10065510704317972095508908800, −5.81156544978872936451623421426, −5.26638380188506621374707060834, −4.71491570384763710121902296680, −4.16198853833206437749890734961, −3.42665838600910385696912032166, −3.19110399319157223137105548532, −2.68985241690590522148729296526, −1.59651631208303436278229670138, −1.00402404230437196821566182156, 0,
1.00402404230437196821566182156, 1.59651631208303436278229670138, 2.68985241690590522148729296526, 3.19110399319157223137105548532, 3.42665838600910385696912032166, 4.16198853833206437749890734961, 4.71491570384763710121902296680, 5.26638380188506621374707060834, 5.81156544978872936451623421426, 6.10065510704317972095508908800, 6.40818821278537747508017147952, 6.70040122798654550620733112587, 7.16152902049794544132675437202, 7.74151171551449502330125125699