L(s) = 1 | − 4-s + 4·5-s − 9-s + 8·11-s + 16-s − 4·19-s − 4·20-s + 11·25-s + 16·29-s + 36-s − 4·41-s − 8·44-s − 4·45-s + 10·49-s + 32·55-s − 28·59-s − 24·61-s − 64-s + 4·76-s + 16·79-s + 4·80-s + 81-s + 20·89-s − 16·95-s − 8·99-s − 11·100-s − 12·101-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 1.78·5-s − 1/3·9-s + 2.41·11-s + 1/4·16-s − 0.917·19-s − 0.894·20-s + 11/5·25-s + 2.97·29-s + 1/6·36-s − 0.624·41-s − 1.20·44-s − 0.596·45-s + 10/7·49-s + 4.31·55-s − 3.64·59-s − 3.07·61-s − 1/8·64-s + 0.458·76-s + 1.80·79-s + 0.447·80-s + 1/9·81-s + 2.11·89-s − 1.64·95-s − 0.804·99-s − 1.09·100-s − 1.19·101-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.391678409 |
L(21) |
≈ |
3.391678409 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1−4T+pT2 |
| 37 | C2 | 1+T2 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C2 | (1+2T+pT2)2 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1−8T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C22 | 1+58T2+p2T4 |
| 47 | C22 | 1−58T2+p2T4 |
| 53 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 59 | C2 | (1+14T+pT2)2 |
| 61 | C2 | (1+12T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1+90T2+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C22 | 1−158T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.875538461991572270039562668007, −9.575870782330406636055930869150, −9.192659590786573781069738731393, −8.917048079349350748800251563254, −8.712317486699673711262015630400, −8.137299122905775590988903394213, −7.59514694031345826863883307751, −6.89494957778772227203001286030, −6.39288926976370005862739861098, −6.29783850258393869721708026030, −6.13262135834501838138314047609, −5.35507438991081208800447699704, −4.81442077210364497922619153180, −4.46295378969176626891892718463, −4.05192271090513651256314678160, −3.13246285146005863052316712149, −2.92157440145278415652892382268, −1.97868340288436899675780708410, −1.52298635124479814406354454352, −0.904483457506386688431449941298,
0.904483457506386688431449941298, 1.52298635124479814406354454352, 1.97868340288436899675780708410, 2.92157440145278415652892382268, 3.13246285146005863052316712149, 4.05192271090513651256314678160, 4.46295378969176626891892718463, 4.81442077210364497922619153180, 5.35507438991081208800447699704, 6.13262135834501838138314047609, 6.29783850258393869721708026030, 6.39288926976370005862739861098, 6.89494957778772227203001286030, 7.59514694031345826863883307751, 8.137299122905775590988903394213, 8.712317486699673711262015630400, 8.917048079349350748800251563254, 9.192659590786573781069738731393, 9.575870782330406636055930869150, 9.875538461991572270039562668007