Properties

Label 4-1110e2-1.1-c1e2-0-15
Degree $4$
Conductor $1232100$
Sign $1$
Analytic cond. $78.5597$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 4·5-s − 9-s + 8·11-s + 16-s − 4·19-s − 4·20-s + 11·25-s + 16·29-s + 36-s − 4·41-s − 8·44-s − 4·45-s + 10·49-s + 32·55-s − 28·59-s − 24·61-s − 64-s + 4·76-s + 16·79-s + 4·80-s + 81-s + 20·89-s − 16·95-s − 8·99-s − 11·100-s − 12·101-s + ⋯
L(s)  = 1  − 1/2·4-s + 1.78·5-s − 1/3·9-s + 2.41·11-s + 1/4·16-s − 0.917·19-s − 0.894·20-s + 11/5·25-s + 2.97·29-s + 1/6·36-s − 0.624·41-s − 1.20·44-s − 0.596·45-s + 10/7·49-s + 4.31·55-s − 3.64·59-s − 3.07·61-s − 1/8·64-s + 0.458·76-s + 1.80·79-s + 0.447·80-s + 1/9·81-s + 2.11·89-s − 1.64·95-s − 0.804·99-s − 1.09·100-s − 1.19·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1232100\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(78.5597\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1232100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.391678409\)
\(L(\frac12)\) \(\approx\) \(3.391678409\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
37$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 158 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.875538461991572270039562668007, −9.575870782330406636055930869150, −9.192659590786573781069738731393, −8.917048079349350748800251563254, −8.712317486699673711262015630400, −8.137299122905775590988903394213, −7.59514694031345826863883307751, −6.89494957778772227203001286030, −6.39288926976370005862739861098, −6.29783850258393869721708026030, −6.13262135834501838138314047609, −5.35507438991081208800447699704, −4.81442077210364497922619153180, −4.46295378969176626891892718463, −4.05192271090513651256314678160, −3.13246285146005863052316712149, −2.92157440145278415652892382268, −1.97868340288436899675780708410, −1.52298635124479814406354454352, −0.904483457506386688431449941298, 0.904483457506386688431449941298, 1.52298635124479814406354454352, 1.97868340288436899675780708410, 2.92157440145278415652892382268, 3.13246285146005863052316712149, 4.05192271090513651256314678160, 4.46295378969176626891892718463, 4.81442077210364497922619153180, 5.35507438991081208800447699704, 6.13262135834501838138314047609, 6.29783850258393869721708026030, 6.39288926976370005862739861098, 6.89494957778772227203001286030, 7.59514694031345826863883307751, 8.137299122905775590988903394213, 8.712317486699673711262015630400, 8.917048079349350748800251563254, 9.192659590786573781069738731393, 9.575870782330406636055930869150, 9.875538461991572270039562668007

Graph of the $Z$-function along the critical line