L(s) = 1 | − 2·3-s − 4-s + 4·7-s + 3·9-s − 8·11-s + 2·12-s + 16-s − 8·21-s − 25-s − 4·27-s − 4·28-s + 16·33-s − 3·36-s − 12·37-s − 4·41-s + 8·44-s − 12·47-s − 2·48-s − 2·49-s − 8·53-s + 12·63-s − 64-s − 24·67-s + 24·71-s − 20·73-s + 2·75-s − 32·77-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1/2·4-s + 1.51·7-s + 9-s − 2.41·11-s + 0.577·12-s + 1/4·16-s − 1.74·21-s − 1/5·25-s − 0.769·27-s − 0.755·28-s + 2.78·33-s − 1/2·36-s − 1.97·37-s − 0.624·41-s + 1.20·44-s − 1.75·47-s − 0.288·48-s − 2/7·49-s − 1.09·53-s + 1.51·63-s − 1/8·64-s − 2.93·67-s + 2.84·71-s − 2.34·73-s + 0.230·75-s − 3.64·77-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3933903996 |
L(21) |
≈ |
0.3933903996 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C1 | (1+T)2 |
| 5 | C2 | 1+T2 |
| 37 | C2 | 1+12T+pT2 |
good | 7 | C2 | (1−2T+pT2)2 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C22 | 1−2T2+p2T4 |
| 23 | C2 | (1−pT2)2 |
| 29 | C22 | 1−54T2+p2T4 |
| 31 | C22 | 1−46T2+p2T4 |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C22 | 1+58T2+p2T4 |
| 47 | C2 | (1+6T+pT2)2 |
| 53 | C2 | (1+4T+pT2)2 |
| 59 | C22 | 1−18T2+p2T4 |
| 61 | C22 | 1−118T2+p2T4 |
| 67 | C2 | (1+12T+pT2)2 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C22 | 1−142T2+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1−34T2+p2T4 |
| 97 | C22 | 1−158T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25233601242330338090564003971, −9.549344045755351280133870684840, −9.540082499143076009899418847400, −8.606803320091890227767562289421, −8.275500262423017108059551941863, −7.941092806026474074300442167043, −7.82373939850816971140897808123, −6.97706187661899317846342614308, −6.90922549752020937169875704460, −6.08364303326375243717514241185, −5.58482274861421329117222928399, −5.19831875646926909265083324229, −5.10598899958593967280850762312, −4.55093287159720382558945460654, −4.24763845043794295734265975699, −3.23654449668267964420466352171, −2.91158535905479085598150828743, −1.72754324329536463598166408976, −1.70132295377990458461839531936, −0.29542925061326266326070552891,
0.29542925061326266326070552891, 1.70132295377990458461839531936, 1.72754324329536463598166408976, 2.91158535905479085598150828743, 3.23654449668267964420466352171, 4.24763845043794295734265975699, 4.55093287159720382558945460654, 5.10598899958593967280850762312, 5.19831875646926909265083324229, 5.58482274861421329117222928399, 6.08364303326375243717514241185, 6.90922549752020937169875704460, 6.97706187661899317846342614308, 7.82373939850816971140897808123, 7.941092806026474074300442167043, 8.275500262423017108059551941863, 8.606803320091890227767562289421, 9.540082499143076009899418847400, 9.549344045755351280133870684840, 10.25233601242330338090564003971