Properties

Label 4-1110e2-1.1-c1e2-0-1
Degree $4$
Conductor $1232100$
Sign $1$
Analytic cond. $78.5597$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4-s + 4·7-s + 3·9-s − 8·11-s + 2·12-s + 16-s − 8·21-s − 25-s − 4·27-s − 4·28-s + 16·33-s − 3·36-s − 12·37-s − 4·41-s + 8·44-s − 12·47-s − 2·48-s − 2·49-s − 8·53-s + 12·63-s − 64-s − 24·67-s + 24·71-s − 20·73-s + 2·75-s − 32·77-s + ⋯
L(s)  = 1  − 1.15·3-s − 1/2·4-s + 1.51·7-s + 9-s − 2.41·11-s + 0.577·12-s + 1/4·16-s − 1.74·21-s − 1/5·25-s − 0.769·27-s − 0.755·28-s + 2.78·33-s − 1/2·36-s − 1.97·37-s − 0.624·41-s + 1.20·44-s − 1.75·47-s − 0.288·48-s − 2/7·49-s − 1.09·53-s + 1.51·63-s − 1/8·64-s − 2.93·67-s + 2.84·71-s − 2.34·73-s + 0.230·75-s − 3.64·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1232100\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(78.5597\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1232100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3933903996\)
\(L(\frac12)\) \(\approx\) \(0.3933903996\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_2$ \( 1 + T^{2} \)
37$C_2$ \( 1 + 12 T + p T^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 158 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25233601242330338090564003971, −9.549344045755351280133870684840, −9.540082499143076009899418847400, −8.606803320091890227767562289421, −8.275500262423017108059551941863, −7.941092806026474074300442167043, −7.82373939850816971140897808123, −6.97706187661899317846342614308, −6.90922549752020937169875704460, −6.08364303326375243717514241185, −5.58482274861421329117222928399, −5.19831875646926909265083324229, −5.10598899958593967280850762312, −4.55093287159720382558945460654, −4.24763845043794295734265975699, −3.23654449668267964420466352171, −2.91158535905479085598150828743, −1.72754324329536463598166408976, −1.70132295377990458461839531936, −0.29542925061326266326070552891, 0.29542925061326266326070552891, 1.70132295377990458461839531936, 1.72754324329536463598166408976, 2.91158535905479085598150828743, 3.23654449668267964420466352171, 4.24763845043794295734265975699, 4.55093287159720382558945460654, 5.10598899958593967280850762312, 5.19831875646926909265083324229, 5.58482274861421329117222928399, 6.08364303326375243717514241185, 6.90922549752020937169875704460, 6.97706187661899317846342614308, 7.82373939850816971140897808123, 7.941092806026474074300442167043, 8.275500262423017108059551941863, 8.606803320091890227767562289421, 9.540082499143076009899418847400, 9.549344045755351280133870684840, 10.25233601242330338090564003971

Graph of the $Z$-function along the critical line