Properties

Label 4-1100e2-1.1-c1e2-0-7
Degree $4$
Conductor $1210000$
Sign $1$
Analytic cond. $77.1506$
Root an. cond. $2.96370$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 6·9-s − 4·13-s − 16-s − 12·17-s + 6·18-s + 4·26-s + 12·29-s − 5·32-s + 12·34-s + 6·36-s + 4·37-s + 4·41-s − 14·49-s + 4·52-s + 4·53-s − 12·58-s − 20·61-s + 7·64-s + 12·68-s − 18·72-s − 28·73-s − 4·74-s + 27·81-s − 4·82-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 2·9-s − 1.10·13-s − 1/4·16-s − 2.91·17-s + 1.41·18-s + 0.784·26-s + 2.22·29-s − 0.883·32-s + 2.05·34-s + 36-s + 0.657·37-s + 0.624·41-s − 2·49-s + 0.554·52-s + 0.549·53-s − 1.57·58-s − 2.56·61-s + 7/8·64-s + 1.45·68-s − 2.12·72-s − 3.27·73-s − 0.464·74-s + 3·81-s − 0.441·82-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1210000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1210000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1210000\)    =    \(2^{4} \cdot 5^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(77.1506\)
Root analytic conductor: \(2.96370\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1210000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
5 \( 1 \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82885193609770565758085877155, −7.25409359989160561546791965971, −6.54918508631964327843106616026, −6.48067063437882788912913410261, −5.91522945024739734859341901763, −5.23353820210759730524176244525, −4.84786612010371112418366573978, −4.45768242969291673579097656708, −4.11816586584967359873614255585, −3.07429403089419103076246288907, −2.69402268918089176010114790698, −2.31804956482818418780108048277, −1.35944850033720564570853590086, 0, 0, 1.35944850033720564570853590086, 2.31804956482818418780108048277, 2.69402268918089176010114790698, 3.07429403089419103076246288907, 4.11816586584967359873614255585, 4.45768242969291673579097656708, 4.84786612010371112418366573978, 5.23353820210759730524176244525, 5.91522945024739734859341901763, 6.48067063437882788912913410261, 6.54918508631964327843106616026, 7.25409359989160561546791965971, 7.82885193609770565758085877155

Graph of the $Z$-function along the critical line