Properties

Label 4-10e2-1.1-c6e2-0-0
Degree $4$
Conductor $100$
Sign $1$
Analytic cond. $5.29248$
Root an. cond. $1.51675$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 46·3-s + 32·4-s − 150·5-s + 368·6-s − 494·7-s + 1.05e3·9-s + 1.20e3·10-s + 2.80e3·11-s − 1.47e3·12-s − 5.40e3·13-s + 3.95e3·14-s + 6.90e3·15-s − 1.02e3·16-s + 5.18e3·17-s − 8.46e3·18-s − 4.80e3·20-s + 2.27e4·21-s − 2.24e4·22-s + 4.27e3·23-s + 6.87e3·25-s + 4.32e4·26-s − 3.35e4·27-s − 1.58e4·28-s − 5.52e4·30-s − 7.56e4·31-s + 8.19e3·32-s + ⋯
L(s)  = 1  − 2-s − 1.70·3-s + 1/2·4-s − 6/5·5-s + 1.70·6-s − 1.44·7-s + 1.45·9-s + 6/5·10-s + 2.10·11-s − 0.851·12-s − 2.46·13-s + 1.44·14-s + 2.04·15-s − 1/4·16-s + 1.05·17-s − 1.45·18-s − 3/5·20-s + 2.45·21-s − 2.10·22-s + 0.351·23-s + 0.439·25-s + 2.46·26-s − 1.70·27-s − 0.720·28-s − 2.04·30-s − 2.54·31-s + 1/4·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+3)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(5.29248\)
Root analytic conductor: \(1.51675\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 100,\ (\ :3, 3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.1679738987\)
\(L(\frac12)\) \(\approx\) \(0.1679738987\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{3} T + p^{5} T^{2} \)
5$C_2$ \( 1 + 6 p^{2} T + p^{6} T^{2} \)
good3$C_2^2$ \( 1 + 46 T + 1058 T^{2} + 46 p^{6} T^{3} + p^{12} T^{4} \)
7$C_2^2$ \( 1 + 494 T + 122018 T^{2} + 494 p^{6} T^{3} + p^{12} T^{4} \)
11$C_2$ \( ( 1 - 1402 T + p^{6} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 5406 T + 14612418 T^{2} + 5406 p^{6} T^{3} + p^{12} T^{4} \)
17$C_2^2$ \( 1 - 5186 T + 13447298 T^{2} - 5186 p^{6} T^{3} + p^{12} T^{4} \)
19$C_2^2$ \( 1 - 91133362 T^{2} + p^{12} T^{4} \)
23$C_2^2$ \( 1 - 4274 T + 9133538 T^{2} - 4274 p^{6} T^{3} + p^{12} T^{4} \)
29$C_2^2$ \( 1 - 258176242 T^{2} + p^{12} T^{4} \)
31$C_2$ \( ( 1 + 37838 T + p^{6} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 74226 T + 2754749538 T^{2} - 74226 p^{6} T^{3} + p^{12} T^{4} \)
41$C_2$ \( ( 1 + 35438 T + p^{6} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 78354 T + 3069674658 T^{2} - 78354 p^{6} T^{3} + p^{12} T^{4} \)
47$C_2^2$ \( 1 - 190386 T + 18123414498 T^{2} - 190386 p^{6} T^{3} + p^{12} T^{4} \)
53$C_2^2$ \( 1 - 72034 T + 2594448578 T^{2} - 72034 p^{6} T^{3} + p^{12} T^{4} \)
59$C_2^2$ \( 1 - 83067945682 T^{2} + p^{12} T^{4} \)
61$C_2$ \( ( 1 - 83322 T + p^{6} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 121666 T + 7401307778 T^{2} - 121666 p^{6} T^{3} + p^{12} T^{4} \)
71$C_2$ \( ( 1 + 40318 T + p^{6} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 258046 T + 33293869058 T^{2} + 258046 p^{6} T^{3} + p^{12} T^{4} \)
79$C_2^2$ \( 1 - 210927781442 T^{2} + p^{12} T^{4} \)
83$C_2^2$ \( 1 + 228846 T + 26185245858 T^{2} + 228846 p^{6} T^{3} + p^{12} T^{4} \)
89$C_2^2$ \( 1 - 958888783522 T^{2} + p^{12} T^{4} \)
97$C_2^2$ \( 1 - 1065666 T + 567822011778 T^{2} - 1065666 p^{6} T^{3} + p^{12} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.89905126297752912454729502298, −18.97066514379148405079858323693, −18.95270406139479278822887060021, −17.57066677305625424790176005393, −17.05338442944964612721408766329, −16.59774190339917888794105022191, −16.37103147277319680501923015314, −15.14307447814799684737386093760, −14.51473847103721798149995301957, −12.75135291853885834326910510800, −12.06791482750842796238168573781, −11.80748732035280005999843675040, −10.84991820920565446614813894006, −9.680538275033016722032587633368, −9.348948698564673596768843027687, −7.41579948042753569680580278597, −6.96872610397053227181765433980, −5.67199416372430237408373390717, −3.97447928207397225156487965858, −0.45719974308732778039320908703, 0.45719974308732778039320908703, 3.97447928207397225156487965858, 5.67199416372430237408373390717, 6.96872610397053227181765433980, 7.41579948042753569680580278597, 9.348948698564673596768843027687, 9.680538275033016722032587633368, 10.84991820920565446614813894006, 11.80748732035280005999843675040, 12.06791482750842796238168573781, 12.75135291853885834326910510800, 14.51473847103721798149995301957, 15.14307447814799684737386093760, 16.37103147277319680501923015314, 16.59774190339917888794105022191, 17.05338442944964612721408766329, 17.57066677305625424790176005393, 18.95270406139479278822887060021, 18.97066514379148405079858323693, 19.89905126297752912454729502298

Graph of the $Z$-function along the critical line