L(s) = 1 | + 4·2-s + 2·3-s + 8·4-s − 30·5-s + 8·6-s − 38·7-s + 2·9-s − 120·10-s + 404·11-s + 16·12-s − 198·13-s − 152·14-s − 60·15-s − 64·16-s − 478·17-s + 8·18-s − 240·20-s − 76·21-s + 1.61e3·22-s + 1.08e3·23-s + 275·25-s − 792·26-s + 162·27-s − 304·28-s − 240·30-s − 1.51e3·31-s − 256·32-s + ⋯ |
L(s) = 1 | + 2-s + 2/9·3-s + 1/2·4-s − 6/5·5-s + 2/9·6-s − 0.775·7-s + 2/81·9-s − 6/5·10-s + 3.33·11-s + 1/9·12-s − 1.17·13-s − 0.775·14-s − 0.266·15-s − 1/4·16-s − 1.65·17-s + 2/81·18-s − 3/5·20-s − 0.172·21-s + 3.33·22-s + 2.04·23-s + 0.439·25-s − 1.17·26-s + 2/9·27-s − 0.387·28-s − 0.266·30-s − 1.57·31-s − 1/4·32-s + ⋯ |
Λ(s)=(=(100s/2ΓC(s)2L(s)Λ(5−s)
Λ(s)=(=(100s/2ΓC(s+2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
100
= 22⋅52
|
Sign: |
1
|
Analytic conductor: |
1.06853 |
Root analytic conductor: |
1.01671 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 100, ( :2,2), 1)
|
Particular Values
L(25) |
≈ |
1.487405746 |
L(21) |
≈ |
1.487405746 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−p2T+p3T2 |
| 5 | C2 | 1+6pT+p4T2 |
good | 3 | C22 | 1−2T+2T2−2p4T3+p8T4 |
| 7 | C22 | 1+38T+722T2+38p4T3+p8T4 |
| 11 | C2 | (1−202T+p4T2)2 |
| 13 | C22 | 1+198T+19602T2+198p4T3+p8T4 |
| 17 | C22 | 1+478T+114242T2+478p4T3+p8T4 |
| 19 | C22 | 1−259042T2+p8T4 |
| 23 | C22 | 1−1082T+585362T2−1082p4T3+p8T4 |
| 29 | C22 | 1−1374562T2+p8T4 |
| 31 | C2 | (1+758T+p4T2)2 |
| 37 | C22 | 1−282T+39762T2−282p4T3+p8T4 |
| 41 | C2 | (1−1042T+p4T2)2 |
| 43 | C22 | 1+1518T+1152162T2+1518p4T3+p8T4 |
| 47 | C22 | 1+918T+421362T2+918p4T3+p8T4 |
| 53 | C22 | 1+3638T+6617522T2+3638p4T3+p8T4 |
| 59 | C22 | 1−3074722T2+p8T4 |
| 61 | C2 | (1−2082T+p4T2)2 |
| 67 | C22 | 1−10162T+51633122T2−10162p4T3+p8T4 |
| 71 | C2 | (1+3478T+p4T2)2 |
| 73 | C22 | 1+6958T+24206882T2+6958p4T3+p8T4 |
| 79 | C22 | 1−18917762T2+p8T4 |
| 83 | C22 | 1−12162T+73957122T2−12162p4T3+p8T4 |
| 89 | C22 | 1−93222082T2+p8T4 |
| 97 | C22 | 1−1122T+629442T2−1122p4T3+p8T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−20.23607954311365487738523774895, −20.01403317711729005848201304095, −19.27162279492311257663844232801, −19.20368663275779165457972978862, −17.55502990608387111124039039755, −16.98567584052670781622901093783, −16.26268387309593465847672038068, −15.35825312872810959797410897070, −14.54725242579615035720868542985, −14.50150656506435262624987352586, −13.10819895540757872456905795597, −12.51656295742487448191409429372, −11.61489344213984914249970358162, −11.25713092051544583063154212326, −9.349130222125409586860684392726, −8.963181990116567087645578232943, −7.07316282889632245175698041630, −6.58661284276896890433337774218, −4.48822831160574025841244091289, −3.59263323010505890195366133299,
3.59263323010505890195366133299, 4.48822831160574025841244091289, 6.58661284276896890433337774218, 7.07316282889632245175698041630, 8.963181990116567087645578232943, 9.349130222125409586860684392726, 11.25713092051544583063154212326, 11.61489344213984914249970358162, 12.51656295742487448191409429372, 13.10819895540757872456905795597, 14.50150656506435262624987352586, 14.54725242579615035720868542985, 15.35825312872810959797410897070, 16.26268387309593465847672038068, 16.98567584052670781622901093783, 17.55502990608387111124039039755, 19.20368663275779165457972978862, 19.27162279492311257663844232801, 20.01403317711729005848201304095, 20.23607954311365487738523774895