Properties

Label 4-10e2-1.1-c4e2-0-0
Degree $4$
Conductor $100$
Sign $1$
Analytic cond. $1.06853$
Root an. cond. $1.01671$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 18·3-s + 8·4-s − 30·5-s − 72·6-s + 58·7-s + 162·9-s + 120·10-s − 236·11-s + 144·12-s + 138·13-s − 232·14-s − 540·15-s − 64·16-s − 542·17-s − 648·18-s − 240·20-s + 1.04e3·21-s + 944·22-s + 538·23-s + 275·25-s − 552·26-s + 1.45e3·27-s + 464·28-s + 2.16e3·30-s + 404·31-s + 256·32-s + ⋯
L(s)  = 1  − 2-s + 2·3-s + 1/2·4-s − 6/5·5-s − 2·6-s + 1.18·7-s + 2·9-s + 6/5·10-s − 1.95·11-s + 12-s + 0.816·13-s − 1.18·14-s − 2.39·15-s − 1/4·16-s − 1.87·17-s − 2·18-s − 3/5·20-s + 2.36·21-s + 1.95·22-s + 1.01·23-s + 0.439·25-s − 0.816·26-s + 2·27-s + 0.591·28-s + 12/5·30-s + 0.420·31-s + 1/4·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1.06853\)
Root analytic conductor: \(1.01671\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 100,\ (\ :2, 2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.000457096\)
\(L(\frac12)\) \(\approx\) \(1.000457096\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T + p^{3} T^{2} \)
5$C_2$ \( 1 + 6 p T + p^{4} T^{2} \)
good3$C_1$$\times$$C_2$ \( ( 1 - p^{2} T )^{2}( 1 + p^{4} T^{2} ) \)
7$C_2^2$ \( 1 - 58 T + 1682 T^{2} - 58 p^{4} T^{3} + p^{8} T^{4} \)
11$C_2$ \( ( 1 + 118 T + p^{4} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 138 T + 9522 T^{2} - 138 p^{4} T^{3} + p^{8} T^{4} \)
17$C_2^2$ \( 1 + 542 T + 146882 T^{2} + 542 p^{4} T^{3} + p^{8} T^{4} \)
19$C_2^2$ \( 1 - 182242 T^{2} + p^{8} T^{4} \)
23$C_2^2$ \( 1 - 538 T + 144722 T^{2} - 538 p^{4} T^{3} + p^{8} T^{4} \)
29$C_2^2$ \( 1 - 952162 T^{2} + p^{8} T^{4} \)
31$C_2$ \( ( 1 - 202 T + p^{4} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 1302 T + 847602 T^{2} + 1302 p^{4} T^{3} + p^{8} T^{4} \)
41$C_2$ \( ( 1 - 1682 T + p^{4} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 2178 T + 2371842 T^{2} - 2178 p^{4} T^{3} + p^{8} T^{4} \)
47$C_2^2$ \( 1 - 54 p T + 1458 p^{2} T^{2} - 54 p^{5} T^{3} + p^{8} T^{4} \)
53$C_2^2$ \( 1 + 1222 T + 746642 T^{2} + 1222 p^{4} T^{3} + p^{8} T^{4} \)
59$C_2^2$ \( 1 - 22889122 T^{2} + p^{8} T^{4} \)
61$C_2$ \( ( 1 + 5598 T + p^{4} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 1502 T + 1128002 T^{2} + 1502 p^{4} T^{3} + p^{8} T^{4} \)
71$C_2$ \( ( 1 - 6442 T + p^{4} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 5902 T + 17416802 T^{2} + 5902 p^{4} T^{3} + p^{8} T^{4} \)
79$C_2^2$ \( 1 + 33613438 T^{2} + p^{8} T^{4} \)
83$C_2^2$ \( 1 + 12462 T + 77650722 T^{2} + 12462 p^{4} T^{3} + p^{8} T^{4} \)
89$C_2^2$ \( 1 + 84185918 T^{2} + p^{8} T^{4} \)
97$C_2^2$ \( 1 + 14622 T + 106901442 T^{2} + 14622 p^{4} T^{3} + p^{8} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.40927505534607014480708864434, −19.83766310813537809024435622667, −19.37004415030012598391470815480, −18.57683806843483705103387378519, −18.17528192393846041571962560345, −17.39657263892531068990599874961, −15.92584702397339250974258949644, −15.58359723051238049094321415300, −15.14653380220326052994219103775, −14.09689758628053902298710611143, −13.50900885747239028179362041665, −12.56296324811360941388841825951, −10.92683241127515175220492978638, −10.84596160869241973199237549649, −9.104051683033048217187035624946, −8.576419223140330273316556010163, −7.961397833103900235480438224705, −7.41236298354186449641074172392, −4.46846646297317084744423291953, −2.63299884198847838915051193532, 2.63299884198847838915051193532, 4.46846646297317084744423291953, 7.41236298354186449641074172392, 7.961397833103900235480438224705, 8.576419223140330273316556010163, 9.104051683033048217187035624946, 10.84596160869241973199237549649, 10.92683241127515175220492978638, 12.56296324811360941388841825951, 13.50900885747239028179362041665, 14.09689758628053902298710611143, 15.14653380220326052994219103775, 15.58359723051238049094321415300, 15.92584702397339250974258949644, 17.39657263892531068990599874961, 18.17528192393846041571962560345, 18.57683806843483705103387378519, 19.37004415030012598391470815480, 19.83766310813537809024435622667, 20.40927505534607014480708864434

Graph of the $Z$-function along the critical line